摘要:
Systems and methods may provide for identifying runtime information associated with an active workload of a platform, and making an active idle state determination for the platform based on at least in part the runtime information. In addition, a low power state of a shared resource on the platform may be controlled concurrently with an execution of the active workload based on at least in part the active idle state determination.
摘要:
Systems and methods of managing break events may provide for detecting a first break event from a first event source and detecting a second break event from a second event source. In one example, the event sources can include devices coupled to a platform as well as active applications on the platform. Issuance of the first and second break events to the platform can be coordinated based on at least in part runtime information associated with the platform.
摘要:
Systems and methods of managing break events may provide for detecting a first break event from a first event source and detecting a second break event from a second event source. In one example, the event sources can include devices coupled to a platform as well as active applications on the platform. Issuance of the first and second break events to the platform can be coordinated based on at least in part runtime information associated with the platform.
摘要:
Systems and methods of managing break events may provide for detecting a first break event from a first event source and detecting a second break event from a second event source. In one example, the event sources can include devices coupled to a platform as well as active applications on the platform. Issuance of the first and second break events to the platform can be coordinated based on at least in part runtime information associated with the platform.
摘要:
Systems and methods of managing break events may provide for detecting a first break event from a first event source and detecting a second break event from a second event source. In one example, the event sources can include devices coupled to a platform as well as active applications on the platform. Issuance of the first and second break events to the platform can be coordinated based on at least in part runtime information associated with the platform.
摘要:
Systems and methods of managing break events may provide for detecting a first break event from a first event source and detecting a second break event from a second event source. In one example, the event sources can include devices coupled to a platform as well as active applications on the platform. Issuance of the first and second break events to the platform can be coordinated based on at least in part runtime information associated with the platform.
摘要:
Systems and methods may provide for conducting a reward determination for a plurality of sleep states to obtain a plurality of reward determinations with respect to a device. In addition, a sleep state may be selected for the device from the plurality of sleep states based at least in part on the plurality of reward determinations. In one example, false entry and missed opportunity probabilities may be determined for stochastic interrupts, wherein the reward determination is conducted based at least in part on the false entry and missed opportunity probabilities.
摘要:
Systems and methods may provide for conducting a reward determination for a plurality of sleep states to obtain a plurality of reward determinations with respect to a device. In addition, a sleep state may be selected for the device from the plurality of sleep states based at least in part on the plurality of reward determinations. In one example, false entry and missed opportunity probabilities may be determined for stochastic interrupts, wherein the reward determination is conducted based at least in part on the false entry and missed opportunity probabilities.
摘要:
Techniques are described for determining a temporary latency tolerance report (tLTR) value. A processing unit has to respond to a device interrupt within a duration specified by tLTR to ensure no incoming data is lost due to device buffer overflow. The tLTR value can be used to prevent the processing unit from entering too deep a sleep state when a device driver anticipates multiple sequential interrupts for a transaction.
摘要:
Techniques are described for determining a temporary latency tolerance report (tLTR) value. A processing unit has to respond to a device interrupt within a duration specified by tLTR to ensure no incoming data is lost due to device buffer overflow. The tLTR value can be used to prevent the processing unit from entering too deep a sleep state when a device driver anticipates multiple sequential interrupts for a transaction.