摘要:
An RF communication system is for operating in the presence of a repetitive RF interference source powered from an Alternating Current (AC) power line. The system uses redundant transmission synchronized to the power line to ensure accurate reception by at least one second device. The RF communication system includes a first device powered from an AC power line which also powers the repetitive RF interference source. The first device, in turn, preferably includes an RF transmitter for transmitting in a frequency band of the repetitive RF interference source, a power line sensor, and a data transmit controller. The data transmit controller generates a plurality of data packets with each data packet including an error detecting portion. The data transmit controller also operates the RF transmitter to produce repetitive first and second transmissions of a same data packet responsive to the power line sensor. Accordingly, at least one of the first and second transmissions occurs during an OFF period of the repetitive RF interference source. The second device also preferably includes a data receive controller for receiving the repetitive first and second transmissions of same data packets and selecting one based upon the error detecting portions thereof to thereby avoid interference from the repetitive RF interference source.
摘要:
Embodiments may provide a way of communicating via an electromagnetic radiator, or light source, that can be amplitude modulated such as light emitting diode (LED) lighting and receivers or detectors that can determine data from light received from the amplitude modulated electromagnetic radiator. Some embodiments may provide a waveform in the form of chips at a chipping clock frequency that switch a light source between on and off states to communicate via light sources that can be amplitude modulated such as LED lighting. Some embodiments may provide a method of transmitting the waveform via modulated LED lighting. Some embodiments are intended for indoor navigation via photogrammetry (i.e., image processing) using self-identifying LED light anchors. In many embodiments, the data signal may be communicated via the light source at amplitude modulating frequencies such that the resulting flicker is not perceivable to the human eye.
摘要:
Some demonstrative embodiments include apparatuses, systems and/or methods of communicating positioning transmissions. For example, an apparatus may include a controller to control at least one light transmitter to transmit from a mobile object Intensity-Modulated (IM) optical signals including On-Off-Keying (OOK) signals of one or more positioning transmissions, the controller is to control the at least one light transmitter to transmit from the mobile object one or more first OOK signals over a first ranging frequency, and to transmit from the mobile object one or more second OOK signals over a second ranging frequency, the second ranging frequency is different from the first ranging frequency.
摘要:
Embodiments may provide a way of communicating via an electromagnetic radiator, or light source, that can be amplitude modulated such as light emitting diode (LED) lighting and receivers or detectors that can determine data from light received from the amplitude modulated electromagnetic radiator. Some embodiments may provide a method of transmitting/encoding data via modulated LED lighting and other embodiments may provide receiving/decoding data from the modulated LED lighting by means of a device with a low sampling frequency such as a relatively inexpensive camera (as might be found in a smart phone). Some embodiments are intended for indoor navigation via photogrammetry (i.e., image processing) using self-identifying LED light anchors. In many embodiments, the data signal may be communicated via the light source at amplitude modulating frequencies such that the resulting flicker is not perceivable to the human eye.
摘要:
A signal detecting unit configured to be associated with a first vehicle includes one or more signal sensors and one or more processors and is configured to receive one or more signals from one or more signal sources is associated with a second vehicle. A set of time values is determined based on arrival times of the signal(s), and a set of distance expressions is generated. A set of distance equations is generated based on the set of time values and the set of distance expressions, and the set of distance equations is solved to determine one or more positions associated with the first vehicle or the one or more signal sources within a defined coordinate system.
摘要:
A Multiple-Input-Multiple-Output (MIMO) data transmit-receive protocol that can be used with an arbitrary light array, including one or more lights, that transmits light to a light receiver having an image sensor, including a large number of light sensing pixels. The protocol supports two primary protocol or coding modes in which the light array may transmit: spatial coding and space-time coding. The protocol is constructed upon the use of efficient start-frame-delimiters (SFDs) and data-delimiters (DDs). The lights may be implemented to transmit the SFDs, the data delimiters, and data bits as modulated light. The light may be modulated in accordance with a modulation technique referred to as frequency shift on-off keying (FSOOK).
摘要:
Device, system and method of phased-array calibration. In some demonstrative embodiments, a wireless communication device may include an array of antenna elements; a calibration element located at a predefined location relative to the antenna elements; and an antenna controller capable of calibrating at least one beam forming weight of at least one antenna element of the array of antenna elements based on a detected phase of a calibration signal transmitted via one of the calibration element and the antenna element and received via another of the calibration element and the antenna element. Other embodiments are described and claimed
摘要:
A system and method for communicating includes a transmitter that transmits a communication signal having a plurality of successive frames, with each frame formed with alternatively arranged N known data symbols and M unknown data symbols such that the N known data symbols as training symbols. The communications signals are received within a receiver. The N known data symbols are synchronized at the receiver by correlating and time averaging the N known data symbols.
摘要:
A wireless ranging system includes a first wireless unit and a second wireless unit spaced therefrom. The first wireless unit may include a time-of-arrival (TOA) wireless transmitter, and a near-field electromagnetic (NFE) wireless transmitter having a settable operating frequency. The second wireless unit may include a TOA wireless receiver cooperating with the TOA wireless transmitter, a NFE wireless receiver cooperating with the NFE wireless transmitter, and a ranging processor cooperating with the TOA wireless receiver. The ranging processor may generate a range estimate between the first and second wireless units, and generate an estimated operating frequency for the NFE wireless transmitter based upon the range estimate. The ranging processor may also generate a range window for the TOA wireless receiver via the ranging processor cooperating with the NFE wireless receiver, and use the range window with the TOA wireless receiver to generate a range estimate between the first and second wireless units.
摘要:
A process is provided for determining the distance between two devices by sending ranging packets between them. The local device sends a first ranging packet, which the remote device sends holds for a first hold time before sending a second ranging packet in return. The local device also sends a third ranging packet, which the remote device sends holds for a second hold time before sending a fourth ranging packet in return. If the second hold time is twice the first hold time, then the propagation time for signals between the two devices can be determined solely by time measurements made by the local device. For received signals, these time measurements can be adjusted to provide accurate time estimates for a direct line of sight signal, which corresponds to a shortest transmission distance between the two devices. The propagation time can then be used to determine distance between the devices.