Abstract:
A gas sensor for determining gas components in gas mixtures, e.g., for exhaust gases of internal combustion engines, includes a housing and a sensor element configured as a field effect transistor which has source, drain, and gate electrodes applied on a semiconductor substrate. A porous, catalytically active material is provided inside the housing of the gas sensor.
Abstract:
A chemically sensitive field effect transistor includes a substrate, a conductor track structure situated on the substrate, and a functional layer which is contacted via the conductor track structure. To be able to form a thin, oxidation-stable and temperature-stable conductor track structure, the conductor track structure is made of a metal mixture which includes platinum and one or more metals selected from the group made up of rhodium, iridium, ruthenium, palladium, osmium, gold, scandium, yttrium, lanthanum, the lanthanides, titanium, zirconium, hafnium, niobium, tantalum, chromium, tungsten, rhenium, iron, cobalt, nickel, copper, boron, aluminum, gallium, indium, silicon, and germanium.
Abstract:
A method for producing at least one porous layer on a substrate, whereby a suspension, which contains particles from a layer-forming material or molecular precursors of the layer-forming material, as well as at least one organic component, is applied to the substrate, the precursors of the layer-forming material are subsequently reacted to produce the layer-forming material following application to the substrate, in a next step, the particles from the layer-forming material are sintered, and the at least one organic component is subsequently removed. Also, a field-effect transistor having at least one gate electrode, the gate electrode having an electrically conductive, porous coating which was applied in accordance with the method.
Abstract:
A gas sensor for determining gas components in gas mixtures, e.g., for exhaust gases of internal combustion engines, includes a housing and a sensor element configured as a field effect transistor which has source, drain, and gate electrodes applied on a semiconductor substrate. A porous, catalytically active material is provided inside the housing of the gas sensor.
Abstract:
A chemically sensitive field effect transistor includes a substrate, a conductor track structure situated on the substrate, and a functional layer which is contacted via the conductor track structure. To be able to form a thin, oxidation-stable and temperature-stable conductor track structure, the conductor track structure is made of a metal mixture which includes platinum and one or more metals selected from the group made up of rhodium, iridium, ruthenium, palladium, osmium, gold, scandium, yttrium, lanthanum, the lanthanides, titanium, zirconium, hafnium, niobium, tantalum, chromium, tungsten, rhenium, iron, cobalt, nickel, copper, boron, aluminum, gallium, indium, silicon, and germanium.
Abstract:
An electronic component includes at least one electrode and at least one gas-sensitive region on a substrate. The gas-sensitive region is coated by at least one electrically conductive, gas-sensitive layer, and the electrode contacts the gas-sensitive layer. At least a part of the at least one electrode covers a part of the gas-sensitive region.
Abstract:
An electronic component includes a printed conductor structure on a substrate, as well as a film which contacts the printed conductor structure. The film has a smaller layer thickness than the printed conductor. The printed conductor structure has a region which is covered by the film for the purpose of contacting.
Abstract:
An electronic component includes a printed conductor structure on a substrate, as well as a film which contacts the printed conductor structure. The film has a smaller layer thickness than the printed conductor. The printed conductor structure has a region which is covered by the film for the purpose of contacting.
Abstract:
A sensor component is described for a gas and/or liquid sensor having a substrate having at least one first printed conductor and a second printed conductor, which are fashioned such that a voltage can be applied, and having at least one sensitive semiconductor material, additionally including at least one trench a contact segment of the first printed conductor and a contact segment of the second printed conductor being situated on two inner side surfaces at a distance from one another, and the at least one sensitive semiconductor material being filled into the at least one trench in the form of at least one particle, grain, and/or crystal, at least between the first contact segment of the first printed conductor and the first contact segment of the second printed conductor. Also described is a production method for a sensor component for a gas and/or liquid sensor. In addition, also described is a method for detecting at least one material in a gaseous and/or liquid medium.
Abstract:
In a method for operating a semiconductor gas sensor, the gas sensor including at least one gas-sensitive electrode, the method may provide for impression of a voltage sequence on the gas-sensitive electrode. The operation may take place in a measuring cycle which is subdivided into at least one initialization phase and at least one subsequent measuring phase, a first voltage sequence being impressed on the gas-sensitive electrode during the initialization phase, a second voltage sequence being impressed on the gas-sensitive electrode during the measuring phase, and the first voltage sequence differing from the second voltage sequence. A semiconductor gas sensor may be provided for implementing the method according to the invention, and a method may relate to the use of such a sensor.