摘要:
A programmable logic integrated circuit device has several features which help it perform according to the PCI Special Interest Group's Peripheral Component Interface (“PCI”) signaling protocol. Regions of programmable logic within the device are closely coupled to the data signal output pins and clock signal input pins such that delay between application of a clock signal to the device and output of a data signal from the device is within PCI signal standards for delay. The device also includes output circuitry that can be configured to selectively invert signals to output enable and data input enable terminals of the output circuitry.
摘要:
A programmable logic array integrated circuit device includes a plurality of regions of programmable logic disposed on the device in a two-dimensional array of intersecting rows and columns of such regions. Each row has a plurality of adjacent horizontal conductors, and each column has a plurality of adjacent vertical conductors. The regions in a row are interspersed with groups of local conductors which interconnect the adjacent regions and the associated horizontal and vertical conductors. The local conductors can also be used for intra-region communication, as well as communication between adjacent regions. Secondary signals such as clocks and clears for the regions can be drawn either from dedicated secondary signal conductors or normal region inputs. Memory cell requirements for region input signal selection are reduced by various techniques for sharing these memory cells.
摘要:
A programmable logic array integrated circuit device has a plurality of regions of programmable logic disposed on the device in a two-dimensional array of intersecting rows and columns of regions. The output signals of several regions share a group of drivers for applying region output signals to interconnection conductors that convey signals between regions. This conserves driver resources and increases signal routing flexibility. Various approaches can be used for configuring the interconnection conductors to also conserve interconnection conductor resources. Logic regions may be used to directly drive specific input/output cells, thereby simplifying signal routing to the I/O cells and also possibly simplifying the structure of the I/O cells (e.g., by allowing certain I/O cell functions to be performed in the associated logic region). Region output signal routing flexibility may also be enhanced to facilitate simultaneous performance of combinatorial logic and a separate "lonely register" function in modules of the regions.
摘要:
A programmable logic device has regions of programmable logic disposed on the device in a two-dimensional array of intersecting rows and columns of such regions. Horizontal interconnection conductors are associated with each row, and vertical interconnection conductors are associated with each column. Local conductors are interspersed between adjacent pairs of regions in each row for supplying signals to the regions on both sides of the local conductors. Subregions of programmable logic in each region generally have a local output and a global output. The global output is only usable to output to the relatively long-distance horizontal and vertical conductors. The local output is additionally usable as a local feedback and as a local connection to an adjacent region.
摘要:
A programmable logic array integrated circuit device has a plurality of regions of programmable logic disposed on the device in a two-dimensional array of intersecting rows and columns of regions. The output signals of several regions share a group of drivers for applying region output signals to interconnection conductors that convey signals between regions. This conserves driver resources and increases signal routing flexibility. Various approaches can be used for configuring the interconnection conductors to also conserve interconnection conductor resources. Logic regions may be used to directly drive specific input/output cells, thereby simplifying signal routing to the I/O cells and also possibly simplifying the structure of the I/O cells (e.g., by allowing certain I/O cell functions to be performed in the associated logic region). Region output signal routing flexibility may also be enhanced to facilitate simultaneous performance of combinatorial logic and a separate “lonely register” function in modules of the regions.
摘要:
A programmable logic array integrated circuit device includes a plurality of regions of programmable logic disposed on the device in a two-dimensional array of intersecting rows and columns of such regions. Each row has a plurality of adjacent horizontal conductors, and each column has a plurality of adjacent vertical conductors. The regions in a row are interspersed with groups of local conductors which interconnect the adjacent regions and the associated horizontal and vertical conductors. The local conductors can also be used for intra-region communication, as well as communication between adjacent regions. Secondary signals such as clocks and clears for the regions can be drawn either from dedicated secondary signal conductors or normal region inputs. Memory cell requirements for region input signal selection are reduced by various techniques for sharing these memory cells.
摘要:
A programmable logic device has subregions of programmable logic grouped together in logic regions. The subregions in each region share several control signals, which can be selected either from relatively global conductors on the device or from data inputs to the region. The control signals allow synchronous or asynchronous clearing of a register in each subregion. The control signals also allow synchronous loading of the register in each subregion, and the data loaded can be either one of the data inputs to the subregion (so-called lonely register operation) or a signal produced by the logic of the subregion.
摘要:
A programmable logic array integrated circuit device includes a plurality of regions of programmable logic disposed on the device in a two-dimensional array of interesting rows and columns. Interconnection conductors are associated with each row and column. The interconnection conductors associated with each row include some that extend continuously along the entire length of the row and some that extend continuously along only the left or right half of the row. To increase the flexibility with which the logic regions can be connected to the row and column conductors, adjacent regions are paired and circuitry is provided for allowing the outputs of each pair to be swapped for driving the row and column conductors. Registers in logic regions can still be used for other purposes when not being used to register the main combinatorial outputs of the logic regions. Many other enhanced features are also provided.
摘要:
A programmable logic array integrated circuit device includes a plurality of regions of programmable logic disposed on the device in a two-dimensional array of interesting rows and columns. Interconnection conductors are associated with each row and column. The interconnection conductors associated with each row include some that extend continuously along the entire length of the row and some that extend continuously along only the left or right half of the row. To increase the flexibility with which the logic regions can be connected to the row and column conductors, adjacent regions are paired and circuitry is provided for allowing the outputs of each pair to be swapped for driving the row and column conductors. Registers in logic regions can still be used for other purposes when not being used to register the main combinatorial outputs of the logic regions. Many other enhanced features are also provided.
摘要:
A programmable logic array integrated circuit device has a plurality of regions of programmable logic disposed on the device in a two-dimensional array of intersecting rows and columns of regions. The output signals of several regions share a group of drivers for applying region output signals to interconnection conductors that convey signals between regions. This conserves driver resources and increases signal routing flexibility. Various approaches can be used for configuring the interconnection conductors to also conserve interconnection conductor resources. Logic regions may be used to directly drive specific input/output cells, thereby simplifying signal routing to the I/O cells and also possibly simplifying the structure of the I/O cells (e.g., by allowing certain I/O cell functions to be performed in the associated logic region). Region output signal routing flexibility may also be enhanced to facilitate simultaneous performance of combinatorial logic and a separate “lonely register” function in modules of the regions.