摘要:
Computer-implemented methods, carrier media, and systems for selecting polarization settings for an inspection system for inspection of a layer of a wafer are provided. One method includes detecting a population of defects on the layer of the wafer using results of each of two or more scans of the wafer performed with different combinations of polarization settings of the inspection system for illumination and collection of light scattered from the wafer. The method also includes identifying a subpopulation of the defects for each of the different combinations, each of which includes the defects that are common to at least two of the different combinations, and determining a characteristic of a measure of signal-to-noise for each of the subpopulations. The method further includes selecting the polarization settings for the illumination and the collection to be used for the inspection corresponding to the subpopulation having the best value for the characteristic.
摘要:
Computer-implemented methods, carrier media, and systems for selecting polarization settings for an inspection system for inspection of a layer of a wafer are provided. One method includes detecting a population of defects on the layer of the wafer using results of each of two or more scans of the wafer performed with different combinations of polarization settings of the inspection system for illumination and collection of light scattered from the wafer. The method also includes identifying a subpopulation of the defects for each of the different combinations, each of which includes the defects that are common to at least two of the different combinations, and determining a characteristic of a measure of signal-to-noise for each of the subpopulations. The method further includes selecting the polarization settings for the illumination and the collection to be used for the inspection corresponding to the subpopulation having the best value for the characteristic.
摘要:
Computer-implemented methods, carrier media, and systems for determining sizes of defects detected on a wafer are provided. One computer-implemented method includes separating the defects into groups based on output acquired for the defects by multiple channels of an inspection system used to detect the defects on the wafer. The method also includes separating the defects in one or more of the groups into subgroups based on the output acquired for the defects by one or more of the multiple channels. In addition, the method includes determining the sizes of one or more of the defects in one or more of the subgroups separately based on the output acquired for the defects by only one of the multiple channels and a calibration parameter. The calibration parameter is different for each of the subgroups and is acquired by using another system to measure actual sizes of defects detected on other wafers.
摘要:
Computer-implemented methods, carrier media, and systems for creating a defect sample for use in selecting one or more parameters of an inspection recipe are provided. One method includes separating defects into bins based on regions in which the defects are located, defect types, and values of the defects for parameter(s) of a detection algorithm. The method also includes determining a number of the defects to be selected from each bin by distributing a user-specified target number of defects across the bins. In addition, the method includes selecting defects from the bins based on the determined numbers thereby creating a defect sample for use in selecting values of parameter(s) of the detection algorithm for use in the inspection recipe.
摘要:
Methods and systems for generating information to be used for selecting values for parameter(s) of a detection algorithm are provided. One method includes without user intervention performing a scan of an area of a wafer using an inspection system and default values for parameter(s) of a detection algorithm to detect defects on the wafer. The method also includes selecting a portion of the defects from results of the scan based on a predetermined maximum number of total defects to be used for selecting values for the parameter(s) of the detection algorithm. The method further includes storing information, which includes values for the parameter(s) of the detection algorithm determined for the defects in the portion. The information can be used to select the values for the parameter(s) of the detection algorithm to be used for the inspection recipe without performing an additional scan of the wafer subsequent to the scan.
摘要:
Methods and systems for generating information to be used for selecting values for parameter(s) of a detection algorithm are provided. One method includes without user intervention performing a scan of an area of a wafer using an inspection system and default values for parameter(s) of a detection algorithm to detect defects on the wafer. The method also includes selecting a portion of the defects from results of the scan based on a predetermined maximum number of total defects to be used for selecting values for the parameter(s) of the detection algorithm. The method further includes storing information, which includes values for the parameter(s) of the detection algorithm determined for the defects in the portion. The information can be used to select the values for the parameter(s) of the detection algorithm to be used for the inspection recipe without performing an additional scan of the wafer subsequent to the scan.