摘要:
The present invention provides flame-resistant polycarbonate moulding compositions with a concentration of alkali metal or alkaline earth metal salts and of silicon compounds and their preparation.
摘要:
The present invention provides telechelic polyisobutylenes having aspartic acid ester terminal groups, the production thereof and the use thereof as modifiers preferably for thermoplastic aromatic polycarbonates, and the mixing thereof with reaction-less polyisobutylenes.
摘要:
The invention relates to use of salts of sulphonic acids, phosphonic acids and/or carboxylic acids in combination with halogenated phthalimides for additional processing of glass fibre-containing polycarbonate moulded members.
摘要:
The present invention provides a process for the production of polycarbonate-polyisobutylene block cocondensates from thermoplastic aromatic polycarbonates and reactive polyisobutylenes in the melt, as well as mixtures of the block cocondensates with non-reactive polyisobutylenes.
摘要:
This invention relates to block copolycarbonates made from polycarbonate blocks and polyisobutylene-.alpha.-haloketocarboxylic acid blocks (abbreviation: PIB blocks), wherein the PIB blocks may, for example, be obtained by ozonolysis of halogenated butyl rubber, and to blends of these block copolycarbonates with elastomers.
摘要:
The invention relates to blends of polycarbonates, branched, phenolic hydroxy functional dimeric fatty acid polyesters and at least one component selected from polyisobutylene, silicones and mineral oils.
摘要:
The present invention provides polycarbonates with aliphatic ketocarboxyl end groups, optionally mixed with known aromatic polycarbonates, and a process for their preparation, the chain terminators used being those of formula (I): ##STR1## The present invention also provides mixtures of the polycarbonates or polycarbonate mixtures with reactionless polyisobutylenes.
摘要:
Flame-resistant polycarbonate molding compositions containing halogen-free sulphonic acid salts of aromatic aldehydes or acetals of these aldehydes in quantities of about 0.005 to 10% relative to the total weight of the composition are disclosed. The compositions optionally further containing inorganic sulphates, exhibit flame retardance and little tendency to dripping in comparison to prior art compositions.
摘要:
The invention relates to a higher-strength steel strip or steel sheet comprising a predominantly ferritic-martensitic microstructure with a martensite content of between 4 and 20%, wherein the steel strip or steel sheet, apart from Fe and impurities due to smelting, comprises (in % by weight) 0.05-0.2% C, ≦1.0% Si, 0.8-2.0% Mn, ≦0.1% P, ≦0.015% S, 0.02-0.4% Al, ≦0.005% N, 0.25-1.0% Cr, 0.002-0.01% B. Preferably the martensite content is approximately 5% to 20% of the predominantly martensitic-ferritic microstructure. Such a higher-strength steel strip or steel sheet made from a dual phase steel comprises good mechanical/technological properties even after being subjected to an annealing process which includes an overageing treatment. Furthermore, the invention relates to a method for producing steel strip or steel sheet according to the invention.
摘要:
A thermoplastic molding composition that features improved low-temperature properties and is thus suitable for application in exterior automotive parts is disclosed. The composition contains (A) 80 to 60 percent of a copolycarbonate wherein 65 to 75 mole percent of its structural units are derived from compounds of formula (I) wherein R1, R2, R3 and R4 independently of one another represents H, C1-C4-alkyl, phenyl, substituted phenyl or halogen, and wherein 25 to 35 mole percent of its structural units are derived from compounds of formula (II) where R5, R6, R7 and R8 independently one of the others denote H, CH3, Cl or Br and X is C1-C5-alkylene, C2-C5-alkylidene, C5-C6-cycloalkylene, C5-C10-cycloalkylidene and (B) 20 to 40 percent of a homopolycarbonate of bisphenol A having a melt flow rate, determined in accordance with ASTM D-1238 under 1.2 kg loading at 300° C. of 3 to 12 gm/10 minutes.