摘要:
An apparatus and method for fine-grained multithreading in a multipipelined processor core. According to one embodiment, a processor may include instruction fetch logic configured to assign a given one of a plurality of threads to a corresponding one of a plurality of thread groups, where each of the plurality of thread groups may comprise a subset of the plurality of threads, to issue a first instruction from one of the plurality of threads during one execution cycle, and to issue a second instruction from another one of the plurality of threads during a successive execution cycle. The processor may further include a plurality of execution units, each configured to execute instructions issued from a respective thread group.
摘要:
A method and apparatus for controlling power consumption in a processor. In one embodiment, a processor includes a pipeline. The pipeline includes logic for fetching instructions, issuing instructions, and executing instructions. The processor also includes a power management unit. The power management unit is configured to input M stalls into the pipeline every N instruction cycles (where M and N are integer value and wherein M is less than N).
摘要:
A multiple-core processor with support for multiple virtual processors. In one embodiment, a processor may include a cache including a number of cache banks, a number of processor cores and core/bank mapping logic coupled to the cache banks and processor cores. During a first mode of processor operation, each of the processor cores may be configurable to access any of the cache banks, and during a second mode of processor operation, the core/bank mapping logic may be configured to implement a plurality of virtual processors within the processor. A first virtual processor may include a first subset of the processor cores and a first subset of the banks, and a second virtual processor may include a second subset of the processor cores and a second subset of the cache banks. Subsets of processor cores and cache banks included in the first and second virtual processors may be distinct.
摘要:
In one embodiment, a node comprises at least one processor core and a plurality of coherence units. The processor core is configured to generate an address to access a memory location. The address maps to a first coherence plane of a plurality of coherence planes. Coherence activity is performed within each coherence plane independent of other coherence planes, and a mapping of the address space to the coherence planes is independent of a physical location of the addressed memory in a distributed system memory. Each coherence unit corresponds to a respective coherence plane and is configured to manage coherency for the node and for the respective coherence plane. The coherence units operate independent of each other, and a first coherence unit corresponding to the first coherence plane is coupled to receive the address if external coherency activity is needed to complete the access to the memory location.
摘要:
In one embodiment, a node comprises at least one memory control unit configured to couple to an industry standard memory interface for coupling to a memory; and at least one coherence unit configured to transmit and receive coherence messages to and from other nodes to maintain coherent memory among the nodes. The coherence messages are conveyed on a second interface to which the coherence unit is coupled, wherein the second interface includes at least a physical layer as specified by the industry standard memory interface.
摘要:
In one embodiment, a node comprises a plurality of processor cores, coherency control circuitry coupled to the plurality of processor cores, and at least one coherence unit coupled to the coherency control circuitry. Each processor core is configured to have a plurality of threads active and each processor core includes at least one first level cache. The coherency control circuitry is configured to manage intranode coherency among the plurality of processor cores. The coherency unit is configured to couple to an external interface of the node, and is configured to transmit and receive coherence messages on the external interface to maintain coherency with at least one other node having one or processor cores and a coherence unit. In another embodiment, a system comprises an interconnect and a plurality of nodes coupled to the interconnect.