Memory array having memory cells formed from metallic material
    1.
    发明授权
    Memory array having memory cells formed from metallic material 有权
    具有由金属材料形成的存储单元的存储器阵列

    公开(公告)号:US07615771B2

    公开(公告)日:2009-11-10

    申请号:US11380498

    申请日:2006-04-27

    IPC分类号: H01L27/20

    CPC分类号: G11C11/16 G11C11/1675

    摘要: Solid-state memories are disclosed that are comprised of cross-point memory arrays. The cross-point memory arrays include a first plurality of electrically conductive lines and a second plurality of electrically conductive lines that cross over the first plurality of electrically conductive lines. The memory arrays also include a plurality of memory cells located between the first and second conductive lines. The memory cells are formed from a metallic material, such as FeRh, having the characteristic of a first order phase transition due to a change in temperature. The first order phase transition causes a corresponding change in resistivity of the metallic material.

    摘要翻译: 公开了由交叉点存储器阵列组成的固态存储器。 交叉点存储器阵列包括跨越第一多个导电线的第一多个导电线和第二多个导电线。 存储器阵列还包括位于第一和第二导线之间的多个存储单元。 存储单元由诸如FeRh的金属材料形成,具有由温度变化引起的一阶相变的特性。 一阶相变导致金属材料的电阻率的相应变化。

    Method for thermally-assisted recording on a magnetic recording disk
    2.
    发明授权
    Method for thermally-assisted recording on a magnetic recording disk 失效
    在磁记录盘上进行热辅助记录的方法

    公开(公告)号:US06834026B2

    公开(公告)日:2004-12-21

    申请号:US10626362

    申请日:2003-07-23

    IPC分类号: G11B1100

    摘要: A magnetic recording medium for thermally-assisted recording is a bilayer of a high-coercivity, high-anisotropy ferromagnetic material like FePt and a switching material like FeRh or Fe(RhM) (where M is Ir, Pt, Ru, Re or Os) that exhibits a switch from antiferromagnetic to ferromagnetic at a transition temperature less than the Curie temperature of the high-coercivity material. The high-coercivity recording layer and the switching layer are exchange coupled ferromagnetically when the switching layer is in its ferromagnetic state. To write data the bilayer medium is heated above the transition temperature of the switching layer. When the switching layer becomes ferromagnetic, the total magnetization of the bilayer is increased, and consequently the switching field required to reverse a magnetized bit is decreased without lowering the anisotropy of the recording layer. The magnetic bit pattern is recorded in both the recording layer and the switching layer. When the media is cooled to below the transition temperature of the switching layer, the switching layer becomes antiferromagnetic and the bit pattern remains in the high-anisotropy recording layer.

    摘要翻译: 用于热辅助记录的磁记录介质是诸如FePt的高矫顽力,高各向异性铁磁材料和诸如FeRh或Fe(RhM)(其中M是Ir,Pt,Ru,Re或Os)的开关材料的双层, 其在低于高矫顽力材料的居里温度的转变温度下表现出从反铁磁转变为铁磁。 当高矫顽力记录层和开关层在开关层处于其铁磁状态时,铁磁性交换耦合。 为了写入数据,双层介质被加热到开关层的转变温度之上。 当开关层成为铁磁性时,双层的总磁化强度增加,因此在不降低记录层的各向异性的情况下降低了使磁化位反转所需的切换场。 磁记录层记录在记录层和切换层中。 当介质冷却到切换层的转变温度以下时,开关层变为反铁磁性,并且位图形保留在高各向异性记录层中。

    MEMORY ARRAY HAVING MEMORY CELLS FORMED FROM METALLIC MATERIAL
    4.
    发明申请
    MEMORY ARRAY HAVING MEMORY CELLS FORMED FROM METALLIC MATERIAL 有权
    具有从金属材料形成的记忆细胞的记忆阵列

    公开(公告)号:US20070253243A1

    公开(公告)日:2007-11-01

    申请号:US11380498

    申请日:2006-04-27

    IPC分类号: G11C11/14

    CPC分类号: G11C11/16 G11C11/1675

    摘要: Solid-state memories are disclosed that are comprised of cross-point memory arrays. The cross-point memory arrays include a first plurality of electrically conductive lines and a second plurality of electrically conductive lines that cross over the first plurality of electrically conductive lines. The memory arrays also include a plurality of memory cells located between the first and second conductive lines. The memory cells are formed from a metallic material, such as FeRh, having the characteristic of a first order phase transition due to a change in temperature. The first order phase transition causes a corresponding change in resistivity of the metallic material.

    摘要翻译: 公开了由交叉点存储器阵列组成的固态存储器。 交叉点存储器阵列包括跨越第一多个导电线的第一多个导电线和第二多个导电线。 存储器阵列还包括位于第一和第二导线之间的多个存储单元。 存储单元由诸如FeRh的金属材料形成,具有由温度变化引起的一阶相变的特性。 一阶相变导致金属材料的电阻率的相应变化。

    MAGNETIC RECORDING SYSTEM WITH MEDIUM HAVING ANTIFERROMAGNETIC-TO- FERROMAGNETIC TRANSITION LAYER EXCHANGE-COUPLED TO RECORDING LAYER
    6.
    发明申请
    MAGNETIC RECORDING SYSTEM WITH MEDIUM HAVING ANTIFERROMAGNETIC-TO- FERROMAGNETIC TRANSITION LAYER EXCHANGE-COUPLED TO RECORDING LAYER 审中-公开
    磁记录系统,具有与抗磁反应转移层交换耦合到记录层的介质

    公开(公告)号:US20080100964A1

    公开(公告)日:2008-05-01

    申请号:US11553215

    申请日:2006-10-26

    IPC分类号: G11B5/82 G11B5/65

    摘要: A magnetic recording disk drive has a bilayer recording medium of a high-anisotropy recording layer and an exchange-coupled antiferromagnetic-to-ferromagnetic (AF-F) transition layer. The transition layer has an AF-F transition temperature (TAF-F) that decreases relatively rapidly with increasing applied magnetic field. Thus the transition layer has a transition field HAF-F(T), which is the applied magnetic field required to transition the material from antiferromagnetic to ferromagnetic at temperature T without the need to heat the layer. At ambient temperature and in the absence of HW, the transition layer is antiferromagnetic and the switching field H0 of the bilayer is just the H0 of the high-anisotropy recording layer, which is typically much higher than HW. In the presence of the write field HW the transition layer transitions from antiferromagnetic to ferromagnetic so that data can be written to the recording by the mere application of the write field HW without the need to heat the transition layer or recording layer. The transition layer may be formed of Fe(RhM), where M is an element selected from V, Mn, Au and Ni.

    摘要翻译: 磁记录盘驱动器具有高各向异性记录层和交换耦合的反铁磁到铁磁(AF-F)过渡层的双层记录介质。 过渡层具有随着施加的磁场增加而相对快速地减小的AF-F转变温度(T AF AF F F)。 因此,过渡层具有过渡场H AF-F(T),其是在温度T下将材料从反铁磁转变为铁磁所需的施加磁场,而不需要加热该层。 在环境温度下和在不存在的情况下,过渡层是反铁磁性的,并且双层的开关场H 0正好是H

    Perpendicular magnetic recording medium and system with low-curie-temperature multilayer for heat-assisted writing and/or reading
    8.
    发明授权
    Perpendicular magnetic recording medium and system with low-curie-temperature multilayer for heat-assisted writing and/or reading 有权
    垂直磁记录介质和具有低Curie-temperature多层的系统,用于热辅助写入和/或读取

    公开(公告)号:US07862912B2

    公开(公告)日:2011-01-04

    申请号:US12041930

    申请日:2008-03-04

    IPC分类号: G11B5/66

    CPC分类号: G11B5/66 Y10T428/1171

    摘要: A perpendicular magnetic recording medium, usable for either continuous or patterned media, has a recording layer structure (RLS) of first and second perpendicular magnetic layers (PM1, PM2) and an antiferromagnetically coupling (AFC) layer and a ferromagnetic switching layer (SWL) between PM1 and PM2. The magnetic recording system uses heat to assist in the reading and/or writing of data. The SWL is a Co/Ni multilayer with a Curie temperature (TC-SWL) less than the Curie temperatures of PM1 and PM2. At room temperature, there is ferromagnetic coupling between SWL and the upper ferromagnetic layer (PM2) so that the magnetizations of SWL and PM2 are parallel, and antiferromagnetic coupling between SWL and the lower ferromagnetic layer (PM1) across the AFC layer so that the magnetization of PM1 is aligned antiparallel to the magnetizations of SWL and PM2. When the SWL is heated to above TC-SWL it is no longer ferromagnetic, there is no antiferromagnetic coupling between the SWL and PM1 across the AFC layer, and the magnetizations of PM1 and PM2 become aligned parallel.

    摘要翻译: 可用于连续或图案化介质的垂直磁记录介质具有第一和第二垂直磁性层(PM1,PM2)和反铁磁耦合(AFC)层和铁磁性切换层(SWL)的记录层结构(RLS) PM1和PM2之间。 磁记录系统使用热量来辅助读取和/或写入数据。 SWL是具有低于PM1和PM2的居里温度的居里温度(TC-SWL)的Co / Ni多层。 在室温下,在SWL和上铁磁层(PM2)之间存在铁磁耦合,使得SWL和PM2的磁化平行,并且SWL与AFC层之间的下铁磁层(PM1)之间的反铁磁耦合,使得磁化 的PM1与SWL和PM2的磁化反平行排列。 当SWL被加热到高于TC-SWL时,它不再是铁磁性的,在AFC层之间的SWL和PM1之间没有反铁磁耦合,并且PM1和PM2的磁化平行排列。

    PERPENDICULAR MAGNETIC RECORDING MEDIUM AND SYSTEM WITH LOW-CURIE-TEMPERATURE MULTILAYER FOR HEAT-ASSISTED WRITING AND/OR READING
    9.
    发明申请
    PERPENDICULAR MAGNETIC RECORDING MEDIUM AND SYSTEM WITH LOW-CURIE-TEMPERATURE MULTILAYER FOR HEAT-ASSISTED WRITING AND/OR READING 有权
    具有低温度温度的多层磁性记录介质和系统,用于热辅助写入和/或读取

    公开(公告)号:US20090226762A1

    公开(公告)日:2009-09-10

    申请号:US12041930

    申请日:2008-03-04

    IPC分类号: G11B5/65

    CPC分类号: G11B5/66 Y10T428/1171

    摘要: A perpendicular magnetic recording medium, usable for either continuous or patterned media, has a recording layer structure (RLS) of first and second perpendicular magnetic layers (PM1, PM2) and an antiferromagnetically coupling (AFC) layer and a ferromagnetic switching layer (SWL) between PM1 and PM2. The magnetic recording system uses heat to assist in the reading and/or writing of data. The SWL is a Co/Ni multilayer with a Curie temperature (TC-SWL) less than the Curie temperatures of PM1 and PM2. At room temperature, there is ferromagnetic coupling between SWL and the upper ferromagnetic layer (PM2) so that the magnetizations of SWL and PM2 are parallel, and antiferromagnetic coupling between SWL and the lower ferromagnetic layer (PM1) across the AFC layer so that the magnetization of PM1 is aligned antiparallel to the magnetizations of SWL and PM2. When the SWL is heated to above TC-SWL it is no longer ferromagnetic, there is no antiferromagnetic coupling between the SWL and PM1 across the AFC layer, and the magnetizations of PM1 and PM2 become aligned parallel.

    摘要翻译: 可用于连续或图案化介质的垂直磁记录介质具有第一和第二垂直磁性层(PM1,PM2)和反铁磁耦合(AFC)层和铁磁性切换层(SWL)的记录层结构(RLS) PM1和PM2之间。 磁记录系统使用热量来辅助读取和/或写入数据。 SWL是具有低于PM1和PM2的居里温度的居里温度(TC-SWL)的Co / Ni多层。 在室温下,在SWL和上铁磁层(PM2)之间存在铁磁耦合,使得SWL和PM2的磁化平行,并且SWL与AFC层之间的下铁磁层(PM1)之间的反铁磁耦合,使得磁化 的PM1与SWL和PM2的磁化反平行排列。 当SWL被加热到高于TC-SWL时,它不再是铁磁性的,在AFC层之间的SWL和PM1之间没有反铁磁耦合,并且PM1和PM2的磁化平行排列。

    Thermally-assisted perpendicular magnetic recording system and head
    10.
    发明授权
    Thermally-assisted perpendicular magnetic recording system and head 失效
    热辅助垂直磁记录系统和头

    公开(公告)号:US07068453B2

    公开(公告)日:2006-06-27

    申请号:US10789907

    申请日:2004-02-27

    IPC分类号: G11B5/02

    摘要: A thermally-assisted perpendicular magnetic recording head includes a write pole tip for generating a magnetic write field in the perpendicular magnetic recording layer, a magnetic shield that confines the write field essentially to the data track to be recorded, an electrically resistive heater for heating the recording layer in the presence of the write field, and a return pole. The write pole tip width essentially defines data track width and is substantially surrounded by the magnetic shield. The shield may include side shields with ends located on opposite sides of the write pole tip and a trailing shield having an end spaced from the write pole tip. The resistive heater is wider than the data track and heats both the data track and adjacent tracks, but thermally-assisted magnetic recording occurs only in the data track because the confined magnetic field in the adjacent tracks is less than the required write field.

    摘要翻译: 热辅助垂直磁记录头包括用于在垂直磁记录层中产生磁写入场的写磁极端头,将写磁场基本上限制于要记录的数据磁道的磁屏蔽,用于加热 在存在写字段的情况下,记录层和返回极。 写极尖宽度基本上限定数据磁道宽度并且基本上被磁屏蔽包围。 屏蔽件可以包括端部位于写入磁极尖端的相对侧上的侧部屏蔽件,以及具有与写入磁极尖端间隔开的端部的后屏蔽件。 电阻加热器比数据轨道宽,并加热数据轨道和相邻轨道,但热辅助磁记录仅发生在数据轨道中,因为相邻轨道中的受限磁场小于所需的写入场。