摘要:
A process to synthesize substituted phenols such as those of the general formula RR′R″Ar(OH) wherein R, R′, and R″ are each independently hydrogen or any group which does not interfere in the process for synthesizing the substituted phenol including, but not limited to, halo, alkyl, alkoxy, carboxylic ester, amine, amide; and Ar is any variety of aryl or hetroaryl by means of oxidation of substituted arylboronic esters is described. In particular, a metal-catalyzed C—H activation/borylation reaction is described, which when followed by direct oxidation in a single or separate reaction vessel affords phenols without the need for any intermediate manipulations. More particularly, a process wherein Ir-catalyzed borylation of arenes using pinacolborane (HBPin) followed by oxidation of the intermediate arylboronic ester by OXONE is described.
摘要:
A process is described for synthesizing aminoarylboronic esters of the general formula wherein R, R2, and R3 are each an alkyl, aryl, vinyl, alkoxy, carboxylic esters, amides, or halogen; Ar is any variety of phenyl, naphthyl, anthracyl, heteroaryl; and R1 is alkyl, hydrogen, or aryl. The aminoarylboronic esters are produced via the metal-catalyzed coupling of arylboronic esters of the general formula wherein R and R1 are any non-interfering group and X is chloro, bromo, iodo, triflates, or nonaflates to amines (primary and secondary). In particular, a process is described for the synthesis of the aminoarylboronic esters via a step-wise or tandem process in which one catalytic event is a metal-catalyzed borylation and the other catalytic event is a metal-catalyzed amination.
摘要:
An apparatus for electronically switching a detonation device is configured to arm an energy source upon receiving a first signal and discharge the energy source to the detonation device upon receiving and validating a second signal. An explosive device comprising a detonation device electrically coupled to an electronic switching device is also provided, wherein the switching device comprises a microcontroller configured to validate the first signal and the second signal. The detonation device may comprise a semiconductor bridge device configured to activate the explosive device upon receiving a charge across a first terminal and a second terminal from the switching device. Methods of operation are also disclosed.
摘要:
An apparatus for electronically switching a detonation device is configured to arm an energy source upon receiving a first signal and discharge the energy source to the detonation device upon receiving and validating a second signal. An explosive device comprising a detonation device electrically coupled to an electronic switching device is also provided, wherein the switching device comprises a microcontroller configured to validate the first signal and the second signal. The detonation device may comprise a semiconductor bridge device configured to activate the explosive device upon receiving a charge across a first terminal and a second terminal from the switching device. Methods of operation are also disclosed.
摘要:
A system includes a plurality of remote servers deployed in a remote network, a central information management server, and a connector for routing transmissions between the plurality of remote servers and the central information management server.
摘要:
A system includes a plurality of remote servers deployed in a remote network, a central information management server, and a connector for routing transmissions between the plurality of remote servers and the central information management server.
摘要:
Systems and methods for centralizing database manipulation for a plurality of heterogeneous databases are disclosed. A single or limited number of central servers can be used to manage a plurality of hosted client systems. With such a technique, database consistent backups can be performed without requiring altering of the central server, even when different database engines are used across the hosted client systems.
摘要:
An apparatus for electronically switching a detonation device is configured to arm an energy source upon receiving a first signal and discharge the energy source to the detonation device upon receiving and validating a second signal. An explosive device comprising a detonation device electrically coupled to an electronic switching device is also provided, wherein the switching device comprises a microcontroller configured to validate the first signal and the second signal. The detonation device may comprise a semiconductor bridge device configured to activate the explosive device upon receiving a charge across a first terminal and a second terminal from the switching device. Methods of operation are also disclosed.