摘要:
A process to synthesize substituted phenols such as those of the general formula RR′R″Ar(OH) wherein R, R′, and R″ are each independently hydrogen or any group which does not interfere in the process for synthesizing the substituted phenol including, but not limited to, halo, alkyl, alkoxy, carboxylic ester, amine, amide; and Ar is any variety of aryl or hetroaryl by means of oxidation of substituted arylboronic esters is described. In particular, a metal-catalyzed C—H activation/borylation reaction is described, which when followed by direct oxidation in a single or separate reaction vessel affords phenols without the need for any intermediate manipulations. More particularly, a process wherein Ir-catalyzed borylation of arenes using pinacolborane (HBPin) followed by oxidation of the intermediate arylboronic ester by OXONE is described.
摘要:
A process is described for synthesizing aminoarylboronic esters of the general formula wherein R, R2, and R3 are each an alkyl, aryl, vinyl, alkoxy, carboxylic esters, amides, or halogen; Ar is any variety of phenyl, naphthyl, anthracyl, heteroaryl; and R1 is alkyl, hydrogen, or aryl. The aminoarylboronic esters are produced via the metal-catalyzed coupling of arylboronic esters of the general formula wherein R and R1 are any non-interfering group and X is chloro, bromo, iodo, triflates, or nonaflates to amines (primary and secondary). In particular, a process is described for the synthesis of the aminoarylboronic esters via a step-wise or tandem process in which one catalytic event is a metal-catalyzed borylation and the other catalytic event is a metal-catalyzed amination.
摘要:
Process for the preparation of oxazole, imidazole, and pyraxole boryl compounds. The compounds are intermediates to functionalized compounds, both natural and synthetic which are cytotoxic, anticancer and antiviral agents.
摘要:
Poly(glycolide) polymers are disclosed. The polymers generally include a polymerized alkynyl-substituted glycolide having a polymer backbone with one or more alkynyl groups appended thereto. The alkynyl groups provide reactive sites for further functionalization of the polymer, for example by reaction with azide derivatives (e.g., azide-substituted organic compounds). Alkynyl and azide groups react via the “click” chemistry mechanism to form functional groups covalently bonded to the polymer via a triazole link. The polymers are biodegradable and can be used to deliver drugs or other therapeutic substances (e.g., large biomolecules such as single strand RNA) at targeted locations in a patient's body and/or at controlled release rates.
摘要:
Poly(glycolide) polymers are disclosed. The polymers generally include a glycolide-based polymer backbone that includes one or more functional groups such as alkynyl groups, hydrophilic organic triazole groups, hydrophobic organic triazole groups (also including amphiphilic organic triazole groups), di-triazole organic crosslinking groups, and triazole-substituted drug derivatives. The alkynyl groups provide reactive sites for further functionalization of the polymer, for example by reaction with azide derivatives. The polymers can further encapsulate a drug for delivery to a patient (i.e., as compared to drug derivatives that are covalently attached to the polymer). The polymers can be in the form of thermodynamically stable unimolecular micelles or crosslinked nanoparticles. The polymer compositions are completely biodegradable and hold great potential for use in biomedical applications.
摘要:
A process for producing cyano substituted arene boranes is described. The compounds are useful intermediates to pharmaceutical compounds using the cyano group as a reactant.
摘要:
A process for producing organic substituted aromatic or heteroaromatic compounds including biaryl and biheteroaryl compounds in a two-step reaction. In the first step, the aromatic or heteroaromatic compound is borylated in a reaction comprising a borane or diborane reagent (any boron reagent where the boron reagent contains a B—H, B—B or B—Si bond) and an iridium or rhodium catalytic complex. In the second step, a metal catalyst catalyzes the formation of the organic substituted aromatic or heteroaromatic compound from the borylated compound and an electrophile such as an aryl or organic halide, triflate (OSO2CF3), or nonaflate (OSO2C4F9). The steps in the process can be performed in a single reaction vessel or in separate reaction vessels. The present invention also provides a process for synthesis of complex polyphenylenes starting from halogenated aromatic compounds.
摘要翻译:一种在两步反应中制备包括联芳基和双杂芳基化合物的有机取代的芳族或杂芳族化合物的方法。 在第一步中,在包含硼烷或乙硼烷试剂(硼试剂含有B-H,B-B或B-Si键的任何硼试剂)和铱或铑催化络合物的反应中,芳族或杂芳族化合物被硼酸化。 在第二步中,金属催化剂催化从硼化化合物和亲电体如芳基或有机卤化物,三氟甲磺酸酯(OSO 2 CF 3)或非卤化物(OSO 2 C 4 F 9)形成有机取代的芳香族或杂芳族化合物。 该方法中的步骤可以在单个反应容器中或在单独的反应容器中进行。 本发明还提供从卤代芳族化合物开始合成络合聚苯的方法。
摘要:
Poly(glycolide) polymers are disclosed. The polymers generally include a glycolide-based polymer backbone that includes one or more functional groups such as alkynyl groups, hydrophilic organic triazole groups, hydrophobic organic triazole groups (also including amphiphilic organic triazole groups), di-triazole organic crosslinking groups, and triazole-substituted drug derivatives. The alkynyl groups provide reactive sites for further functionalization of the polymer, for example by reaction with azide derivatives. The polymers can further encapsulate a drug for delivery to a patient (i.e., as compared to drug derivatives that are covalently attached to the polymer). The polymers can be in the form of thermodynamically stable unimolecular micelles or crosslinked nanoparticles. The polymer compositions are completely biodegradable and hold great potential for use in biomedical applications.
摘要:
A homopolymer of 1,4-benzodioxepin-3-cyclohexyl-2,5-dione with a Tg of 120° C. Copolymers are also described. The polymers are useful for surgical and other applications where biodegradability is important.
摘要:
Cyclic alkyl, particularly cyclohexyl, substituted glycolides and polylactides are described. The polylactides have a high glass transition temperature and improved clarity.