摘要:
A method for monitoring a biological tissue includes illuminating the tissue, including a fluorophore, with a wavelength of light, the wavelength selected for exciting the fluorophore, determining a fluorescent emission of the fluorophore, the emission indicating the presence of the fluorophore, and correlating an emission of the fluorophore to an extent and degree of damage to the tissue. Damage to the tissue includes a breakdown of the fluorophore, resulting in a reduced level of emission. The fluorophore can include one of collagen and elastin. The fluorophore can include tryptophan, nicotinamide adenine dinucleotide, flavin and porphyrin. Correlating the emission of the fluorophore to the extent and degree of damage further includes processing a correlation of the emission over time, controlling the power of a laser welder based on the processed correlation, and preventing overheating of the tissue by the laser welder.
摘要:
A multiple-stage optical Kerr gate system for gating a probe pulse of light. In a first embodiment, the system includes at least two optical Kerr gates, each Kerr gate including a polarizer, an optical Kerr cell actuable by a pump pulse, and an analyzer. In a second embodiment, at least one of the Kerr cells may be eliminated by arranging the respective sets of polarizers and analyzers so that they share a common Kerr cell. Gated pulses obtained using the present system typically have a signal to noise ratio that is at least 500 times better than that for gated pulses obtained using a single optical Kerr gate system. The system of the present invention may also include means for causing the pump pulse to arrive at the second Kerr cell (in the case of the first embodiment) or at a single Kerr cell a second time (in the case of the second embodiment) non-synchronously with the arrival of the probe pulse thereat. In this manner, gated pulses may be obtained that are much shorter in duration than pulses gated with a single optical Kerr gate system.
摘要:
A method for detecting the presence of one or more calcifications within a portion of a turbid medium, such as a breast tissue. According to one aspect, the method involves illuminating at least a portion of the turbid medium with light, whereby light emerges from the turbid medium consisting of a ballistic component, a snake-like component and a diffuse component, temporally and/or spatially gating the emergent light to preferentially pass the ballistic and/or snake-like components, using the temporally and/or spatially gated light to form an image of the illuminated portion of the turbid medium, and examining the image for the presence of one or more calcifications. Wavelength difference images may also be used to highlight tumors and calcification regions. The foregoing method may be used to form optical images of breast tissues, with the presence in such images of calcifications suggestive of cancer being used to identify the corresponding breast tissues as good candidates for biopsy and screening for tumors.
摘要:
An apparatus utilizing non-linear optical signals for use in constructing a three-dimensional tomographic map of an in vivo biological tissue for medical disease detection purposes. In one embodiment, said apparatus comprises a stage for supporting the in vivo biological tissue; a laser for illuminating the in vivo biological tissue with a focused beam of laser light, the light emerging from the in vivo biological tissue comprising fundamental light, harmonic wave light, and fluorescence due to multi-photon excitation; a filter for selectively passing only at least one of the harmonic wave light and the fluorescence; one or more detectors for individually detecting each of the harmonic wave light and the fluorescence selectively passed; and a mechanism for moving the laser relative to the stage in x, y and z directions.
摘要:
A method of forming 2 dimensional image of a translucent object in or behind a turbid medium. In one embodiment, the method comprises the steps of illuminating the translucent object through one side of the turbid medium with an ultrafast pulse of light, the light emergent from the opposite side of the turbid medium consisting of a ballistic component, a snake-like component and a diffuse component. The emergent light is then temporally and spatially gated to preferentially pass the ballistic component and the snake-like component. Preferably, the temporal and spatial gating is achieved by positioning the Kerr cell of an optical Kerr gate at the 2F spectral plane of a 4F Kerr-Fourier imaging system. At the appropriate time, that portion of the Kerr cell located at the focal point of the 2F spectral plane is gated open, allowing predominantly ballistic and snake-like components of the transilluminated light to pass therethrough. A cooled CCD detector is positioned at the 4F spectral plane to form a 2-dimensional image of the temporally and spatially gated light.
摘要:
A system for non-destructively imaging surfaces through a coating, in accordance with the present invention, includes a near-infrared (NIR) light source for illuminating a coated surface. A detector is positioned in an operative relationship with the NIR light source to receive light backscattered from the coated surface and from the coating. A gating device is positioned in an operative relationship with the detector to selectively permit light to pass to the detector to measure optical characteristics of the backscattered light such that determinations of a state of a surface below the coating is determined based on the optical characteristics of the backscattered light. Methods for performing the non-destructive imaging of the present invention are also disclosed.
摘要:
Remote-controllable, micro-scale, robotic device for use in diagnosing and/or treating abnormalities inside a human body in vivo. The device has a length from 0.1 mm to 10 mm and can be introduced into the body either from natural body openings or by injection into the blood stream. Once inside the body, the device can be guided to different locations in the body by an outside operator using radio controls and computer software. 2-dimensional image information and spectroscopic information (e.g., fluorescence, absorption, elastic scattering, Raman, etc.) gathered by the device inside the body are transmitted by video and radio signals to a computer located externally relative to the body. The transmitted information is processed, analyzed and displayed by the external computer for use by the outside operator. The outside operator can then make a diagnosis and, if applicable, instruct the device to render a treatment on the examined area. Such treatments include the ablation of tissue using lasers or the like and the binding of ruptured tissues together using chemical glue, UV cured epoxy materials or photochemical or photo-ionization techniques using near-infrared light to weld tissue from absorption at water bands.
摘要:
A system for imaging an object in or behind a highly scattering medium includes a laser for illuminating the highly scattering medium with a beam of light. The light emerging from the highly scattering medium consists of a ballistic component, a snake-like component and a diffuse component. A 4F Fourier imaging system with a Kerr gate located at 2F is used to form a time-space gated image of the emerging light, the time-space gated image consisting primarily of the ballistic component and the snake-like component.
摘要:
A multiple-stage optical Kerr gate system for gating a probe pulse of light. In a first embodiment, the system includes at least two optical Kerr gates, each Kerr gate including a polarizer, an optical Kerr cell actuable by a pump pulse, and an analyzer. In a second embodiment, at least one of the Kerr cells may be eliminated by arranging the respective sets of polarizers and analyzers so that they share a common Kerr cell. Gated pulses obtained using the present system typically have a signal to noise ratio that is at least 500 times better than that for gated pulses obtained using a single optical Kerr gate system. The system of the present invention may also include means for causing the pump pulse to arrive at the second Kerr cell (in the case of the first embodiment) or at a single Kerr cell a second time (in the case of the second embodiment) non-synchronously with the arrival of the probe pulse thereat. In this manner, gated pulses may be obtained that are much shorter in duration than pulses gated with a single optical Kerr gate system.