摘要:
A method for detecting the presence of one or more calcifications within a portion of a turbid medium, such as a breast tissue. According to one aspect, the method involves illuminating at least a portion of the turbid medium with light, whereby light emerges from the turbid medium consisting of a ballistic component, a snake-like component and a diffuse component, temporally and/or spatially gating the emergent light to preferentially pass the ballistic and/or snake-like components, using the temporally and/or spatially gated light to form an image of the illuminated portion of the turbid medium, and examining the image for the presence of one or more calcifications. Wavelength difference images may also be used to highlight tumors and calcification regions. The foregoing method may be used to form optical images of breast tissues, with the presence in such images of calcifications suggestive of cancer being used to identify the corresponding breast tissues as good candidates for biopsy and screening for tumors.
摘要:
A system for imaging an object in or behind a highly scattering medium includes a laser for illuminating the highly scattering medium with a beam of light. The light emerging from the highly scattering medium consists of a ballistic component, a snake-like component and a diffuse component. A 4F Fourier imaging system with a Kerr gate located at 2F is used to form a time-space gated image of the emerging light, the time-space gated image consisting primarily of the ballistic component and the snake-like component.
摘要:
A method for determining if tissue is malignant as opposed to non-malignant (i.e., benign tumor tissue, benign tissue, or normal tissue). In one embodiment, the method comprises irradiating a human breast tissue sample with light at a wavelength of about 310 nm and measuring the time-resolved fluorescence emitted therefrom at about 340 nm. The time-resolved fluorescence profile is then compared to similar profiles obtained from known malignant and non-malignant human breast tissues. By fitting the profiles to the formula I(t)=A.sub.1 e.sup.(-t/.tau. 1.sup.) +A.sub.2 e.sup.(-t/.tau. 2.sup.), one can quantify the differences between tissues of various conditions. For example, non-malignant human breast tissues exhibit a slow component (.tau..sub.2) which is less than 1.6 ns whereas malignant human breast tissues exhibit a slow component (.tau..sub.2) which is greater than 1.6 ns. In addition, non-malignant human breast tissues exhibit a ratio of fast to slow amplitudes (A.sub.1 /A.sub.2) which is greater than 0.85 whereas malignant human breast tissues exhibit a ratio of fast to slow amplitudes (A.sub.1 /A.sub.2) which is less than 0.6. This technique can be used with different excitation and/or emission wavelengths, and can be applied to the detection of malignancies (or other abnormal states) in tissues other than human breast tissue.
摘要:
A method for determining if tissue is malignant as opposed to non-malignant (i.e., benign tumor tissue, benign tissue, or normal tissue), In one embodiment, the method comprises irradiating a human breast tissue sample with light at a wavelength of about 310 nm and measuring the time-resolved fluorescence emitted therefrom at about 340 nm. The time-resolved fluorescence profile is then compared to similar profiles obtained from known malignant and non-malignant human breast tissues. By fitting the profiles to the formula I(t)=A.sub.1 e(-t/.tau..sub.1)+A.sub.2 e(-t/.tau..sub.2) one can quantify the differences between tissues of various conditions. For example, non-malignant human breast tissues exhibit a slow component (.tau..sub.2) which is less than 1.6 ns whereas malignant human breast tissues exhibit a slow component (.tau..sub.2) which is greater than 1.6 ns. In addition, non-malignant human breast tissues exhibit a ratio of fast to slow amplitudes (A.sub.1 /A.sub.2) which is greater than 0.85 whereas malignant human breast tissues exhibit a ratio of fast to slow amplitudes (A.sub.1 /A.sub.2) which is less than 0.6. This technique can be used with different excitation and/or emission wavelengths, and can be applied to the detection of malignancies (or other abnormal states) in tissues other than human breast tissue.
摘要:
A coupling apparatus includes a lens disposed between a port, such as a photodetector, and a light source, such as a fiber. The lens is aligned such that light emitted from the light source is focused by the lens onto the port. Between the lens and light source and/or lens and port, a low contrast medium is disposed to reduce reflection that could degrade signal strength.
摘要:
An apparatus and method steer a light through a lens into a receiving port via a steering device. The steering device is located between the lens and a light source. A feedback mechanism adjusts the steering device to correct for aberration.
摘要:
A wireless capsule as a disease diagnosis tool in vivo can be introduced into a biological body by a native and/or artificial open, or endoscope, or an injection. The information obtained from a micro-spectrometer, and/or an imaging system, or a micro-biosensor, all of which are built-in a wireless capsule, can be transmitted to the outside of the biological body for medical diagnoses. In addition, a real-time specimen collection device is integrated with the diagnostic system for the in-depth in vitro analysis
摘要:
An internal laser module may be capable of providing a similar high performance as that provided by traditional internally cooled laser modules, but with improved cost efficiency and manufacturability. In the internally cooled laser module, a laser subassembly, such as a coaxial semiconductor laser, may be mounted on a thermoelectric cooler cooler-base with several other components enclosed in a properly designed case.
摘要:
A coupling apparatus includes a lens disposed between a port, such as a photodetector, and a light source, such as a fiber. The lens is aligned such that light emitted from the light source is focused by the lens onto the port. Between the lens and light source and/or lens and port, a low contrast medium is disposed to reduce reflection that could degrade signal strength.
摘要:
A wireless capsule as a disease diagnosis tool in vivo can be introduced into a biological body by a native and/or artificial open, or endoscope, or an injection. The information obtained from a micro-spectrometer, and/or an imaging system, or a micro-biosensor, all of which are built-in a wireless capsule, can be transmitted to the outside of the biological body for medical diagnoses. In addition, a real-time specimen collection device is integrated with the diagnostic system for the in-depth in vitro analysis