Abstract:
A system and method transmits data received at varying frequencies at a fixed data rate. The frequency dependent data and associated data clock signal are received and the frequency dependent data is converted to frequency independent data. A ratio of a number of data clock cycles to a number of reference clock cycles is determined and transmitted. The frequency independent data and header data are transmitted, at a fixed rate, to a receiver, the fixed rate being a frequency greater than the frequency of the associated data clock signal. The received the frequency independent data is converted to frequency dependent data based upon the received determined ratio. The communication channel may include an optical fiber and a tension member wherein control data is transmitted along the tension member and graphic data is transmitted along the optical fiber.
Abstract:
A microphone device is provided which comprises a main microphone (MM), at least one control microphone (CM) and a digital signal processing unit (DSP) coupled to the main microphone (MM) and the at least one control microphone (CM). The digital signal processing unit (DSP) receives the output of the main microphone (MM) and the output of the at least one control microphone (CM). Based on the output signals, the digital signal processing unit (DSP) is adapted to perform a noise suppression of pop noise in the output signal of the main microphone (MM).
Abstract:
A microphone device is provided which comprises a main microphone (MM), at least one control microphone (CM) and a digital signal processing unit (DSP) coupled to the main microphone (MM) and the at least one control microphone (CM). The digital signal processing unit (DSP) receives the output of the main microphone (MM) and the output of the at least one control microphone (CM). Based on the output signals, the digital signal processing unit (DSP) is adapted to perform a noise suppression of pop noise in the output signal of the main microphone (MM).