摘要:
The invention relates to polyazacycloalkanes having 3, 4 or 5 nitrogen atoms, tri-, tetra- or penta-azamacrocyclic transition metal complexes and processes for the production of said polyazacycloalkanes. The object of the invention is to form polyazacycloalkanes able to trap metal cations and in particular U, Pu, Am, Ce, Eu, Al, Gd, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ag, Cd, Sn, Au, Mg or Pb or complexes able to trap in particular oxygen in a gaseous mixture. The invention more particularly applies to the treatment of liquid effluents from nuclear power stations.
摘要:
The invention relates to polyazacycloalkanes having 3, 4 or 5 nitrogen atoms, tri-, tetra- or penta-azamacrocyclic transition metal complexes and processes for the production of said polyazacycloalkanes. The object of the invention is to form polyazacycloalkanes able to trap metal cations and in particular U, Pu, Am, Ce, Eu, Al, Gd, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ag, Cd, Sn, Au, Mg or Pb or complexes able to trap in particular oxygen in a gaseous mixture. The invention more particularly applies to the treatment of liquid effluents from nuclear power stations.
摘要:
Material composed of a polyazacycloalkane grafted on polypropylene fibres.Process for the preparation of this material.Process for removing metal cations present in a liquid by bringing this liquid into contact with the said material.
摘要:
The invention is related to a method and an installation for removal of metal cations contained in a liquid, in which said liquid is brought into contact at a temperature greater than or equal to 60° C. with a chelating ion exchange resin formed from a polyazacycloalkane grafted on a solid support, said resin having been conditioned, previously to said contacting, at a pH of 4 to 6.
摘要:
This system collects light emitted by at least one light source (52) and focuses it onto at least one light detection device (54). Preferably, it comprises a first mirror (58) that collects light emitted by the source and focuses it on a second mirror (60) that focuses it in turn onto the device. The system is provided with a chamber that is opaque to all light, particularly ultraviolet radiation, and in which the light source, the light detection device and the mirrors are placed, and means of creating a vacuum in this chamber and filling it with a gas that is transparent to ultraviolet radiation.