摘要:
A system connecting and controlling gain and phase errors in a direct conversion receiver having a pair of signal channels carrying I and Q baseband signal components in a quadrature relationship. The system operates by treating all phase and gain errors as resident in the Q channel and thus describes an iterative process generating a plurality of intermediary signals that in turn incorporate a trigonometric product of the IF signal and the I and Q signal component to produce a pair of correction factors that ideally maintains a matched quadrature relationship between the two signal channels.
摘要:
An antenna for an implantable medical device (IMD) is provided including a monolithic structure derived from a plurality of discrete dielectric layers having an antenna embedded within the monolithic structure. Superstrate dielectric layers formed above the antenna may provide improved matching gradient with the surrounding environment to mitigate energy reflection effects. A outermost biocompatible layer is positioned over the superstrates as an interface with the surrounding environment. A shielding layer is positioned under the antenna to provide electromagnetic shielding for the IMD circuitry. Substrate dielectric layers formed below the antenna may possess higher dielectric values to allow the distance between the antenna and ground shielding layer to be minimized. An electromagnetic bandgap layer may be positioned between the antenna and the shielding layer. The dielectric layers may comprise layers of ceramic material that can be co-fired together with the antenna to form a hermetically sealed monolithic antenna structure.
摘要:
Constituents of a network of medical devices communicate according to a synchronous communication protocol. A constituent of the network is established as a conductor. Time slots are assigned to each constituent of the network other than the conductor. Information is communicated between the constituents of the network in the assigned time slots.
摘要:
An equalization circuit is provided. The equalization circuit includes an input adapted to receive signals from a communications channel. The equalization circuit further includes a plurality of equalizer circuits coupled to the input and operable to generate a plurality of intermediate signals. A selector circuit is also included. The selector circuit is responsive to the plurality of equalizer circuits and selects one of the intermediate signals. The equalization circuit also includes an output coupled to the selector circuit that receives the selected intermediate signal.
摘要:
Wireless communications structures and methods are provided that utilize frequency domain spatial processing. Structure is included that receives and transmits signals from an array of Mβ antennas wherein the antennas are connected to M switches in groups of β. Each switch is connected to a single spatial processing channel and β antennas and each spatial processing channel is assigned complex multiplicative factor(s), or weight(s), that enhance overall system performance in the presence of interference and propagation-related impairments such as multipath fading.
摘要:
An antenna structure for an implantable medical device (IMD) is provided that includes an antenna embedded within a structure derived from a plurality of discrete dielectric layers. An array of electrodes are connected to the antenna structure and arranged for applying a bias across selected segments of the dielectric layers for altering the performance characteristics of the antenna. The bias applied by the array of electrodes can be selected to provide desired impedance matching between the antenna and the surrounding environment of the implant location to mitigate energy reflection effects at the transition from the antenna structure to the surrounding environment, to provide beam steering functionality for the antenna, or to alter the gain of the signals received by the antenna. IMD is configured to monitor received signal characteristics (e.g., RSSI, EVM or bit error rate) and alter material properties of the dielectric material through biasing to control antenna performance.
摘要:
An antenna structure for an implantable medical device (IMD) is provided that includes an antenna embedded within a structure derived from a plurality of discrete dielectric layers. An array of electrodes are connected to the antenna structure and arranged for applying a bias across selected segments of the dielectric layers for altering the performance characteristics of the antenna. The bias applied by the array of electrodes can be selected to provide desired impedance matching between the antenna and the surrounding environment of the implant location to mitigate energy reflection effects at the transition from the antenna structure to the surrounding environment, to provide beam steering functionality for the antenna, or to alter the gain of the signals received by the antenna. IMD is configured to monitor received signal characteristics (e.g., RSSI, EVM or bit error rate) and alter material properties of the dielectric material through biasing to control antenna performance.
摘要:
Calibration methods and structures are provided for wireless communications devices that compensate across a signal bandwidth for relative gain and phase errors between spatial communication channels while utilizing existing transceiver structures and facilitating the use of frequency-domain spatial processing. The methods and structures are directed to time-division duplex (TDD) systems, and are particularly suited to those that incorporate orthogonal frequency division multiplexing (OFDM).