Abstract:
Air flow is reduced through a structure insulated with one more layers of fiber wool or particulate insulating material. A layer of a foamed fluid polymeric composition is applied onto the exposed surface of the insulation to cover the edges at which the exposed surface of the insulation meets an enclosing member of the structure. The layer is then cured to form a polymeric coating on the exposed surface of the insulation. The coating seals the edge or edges at which the exposed surface of the insulation meets the enclosing members of the structure.
Abstract:
The present invention provides compositions for and methods of rapidly making roof coatings, wherein two-component aqueous compositions comprise a component one that has a pH of from 7.5 to 10 (i) one or more emulsion copolymers having a glass transition temperature (Tg) as determined by differential scanning calorimetry (DSC) of from −45° C. to 0° C., and (ii) one or more anionic surfactants, and, in a separate component, (iii) an aqueous acid chosen from a (poly)carboxylic acid or polymeric polyacid. The compositions have little or no ammonia, set within 10 minutes, preferably, a minute or less, and allow one to apply a film as thick as from 0.3 to 3 mm in a single application by co-spraying the two-components or applying them sequentially in one or several passes over a roofing substrate.
Abstract:
Seal a fenestration opening that contains a gap having a width of greater than 1.6 millimeters by providing a dispersion having the following components dispersed in an aqueous phase: (i) a film-forming polymer binder having a glass transition temperature in a range of −100 degrees Celsius to −20 degrees Celsius; (ii) a shear thinning rheology modifier at a concentration sufficient to cause the dispersion to have a Brookfield viscosity greater than 300,000 centiPoise as measured using spindle #3 at 0.3 revolutions per minute; and (iii) optionally, a filler; and then spraying the dispersion directly onto the building elements within the fenestration opening so as to form a continuous coating over the building elements and gap within the fenestration opening; wherein there is an absence of reinforcement or sealing material filling or spanning the gap prior to spraying the dispersion over the gap.
Abstract:
The present invention provides methods of making block resistant coated substrates, such as boards, sheets, panels, tiles, assemblies or membranes for use in building and construction, such as for exterior use, the methods comprising coating a substrate with a coating composition of one or more aqueous emulsion polymers and one or more photoinitiators, such as a hydrogen abstraction initiator, onto the substrate to form a coated substrate, at least partially curing or drying the coating, and exposing the at least partially cured coating on the coated substrate to UV light to cause the photoinitiator to react with itself or with the coating composition. In the methods, the wavelength of the UV light used preferably matches or at least overlaps the spectral activation or excitation window of the one or more photoinitiators.
Abstract:
Air flow is reduced through a structure insulated with one more layers of fiber wool or particulate insulating material. A layer of a foamed fluid polymeric composition is applied onto the exposed surface of the insulation to cover the edges at which the exposed surface of the insulation meets an enclosing member of the structure. The layer is then cured to form a polymeric coating on the exposed surface of the insulation. The coating seals the edge or edges at which the exposed surface of the insulation meets the enclosing members of the structure.
Abstract:
The present invention provides a self-collapsing, moisture curable one component polyurethane foam (1K PU) composition from moisture curable polyurethane prepolymers and to methods of making weather resistant barriers and formed in place gaskets therefrom. The foam compositions are packed under pressure with a blowing agent. In the methods, the foams are applied to gaps in the exterior (sheathing) of a building under construction and collapse on cure to enable application an aqueous weather barrier coating thereover within an hour. The foams also cure when applied on or adjacent a structure to form a foam gasket that enables installation of additional structural elements over or adjacent the foam gasket without bowing or damage to the structure treated.
Abstract:
The present invention provides a device for applying a fluid sealant with a light touch, the device comprising a wand with a fluid sealant supply, either as part of the wand or as a separate supply tube, attached to the top of an applicator head via a universal joint, wherein the applicator head has a chamber on its underside which is sufficiently large to enable a constant supply of a fluid sealant to a substrate that is to be sealed, and the applicator head has a chamber edge disposed around its lower periphery adapted to strike the sealant flat. In addition, the present invention provides methods of using the devices to form a seal, e.g. a weather-resistive barrier on a sheathed building structure, by applying a flexible and compressible foam to gaps in the structure. The foam may comprise one or more aqueous polymer having a glass transition temperature of less than 25° C.
Abstract:
The present invention provides a self-collapsing, moisture curable one component polyurethane foam (1K PU) composition from moisture curable polyurethane prepolymers and to methods of making weather resistant barriers and formed in place gaskets therefrom. The foam compositions are packed under pressure with a blowing agent. In the methods, the foams are applied to gaps in the exterior (sheathing) of a building under construction and collapse on cure to enable application an aqueous weather barrier coating thereover within an hour. The foams also cure when applied on or adjacent a structure to form a foam gasket that enables installation of additional structural elements over or adjacent the foam gasket without bowing or damage to the structure treated.
Abstract:
Seal a fenestration opening that contains a gap having a width of greater than 1.6 millimeters by providing a dispersion having the following components dispersed in an aqueous phase: (i) a film-forming polymer binder having a glass transition temperature in a range of −100 degrees Celsius to −20 degrees Celsius; (ii) a shear thinning rheology modifier at a concentration sufficient to cause the dispersion to have a Brookfield viscosity greater than 300,000 centiPoise as measured using spindle #3 at 0.3 revolutions per minute; and (iii) optionally, a filler; and then spraying the dispersion directly onto the building elements within the fenestration opening so as to form a continuous coating over the building elements and gap within the fenestration opening; wherein there is an absence of reinforcement or sealing material filling or spanning the gap prior to spraying the dispersion over the gap.