摘要:
A small fuel cell (10) powers a portable electronic device (12) and contains a fuel reservoir (14) and a device (16) that measures the amount of liquid fuel (18) that is in the reservoir. The fuel cell operates on hydrogen that is obtained from a liquid hydrocarbon fuel, such as alcohol or other hydrocarbons. The liquid fuel is typically converted into hydrogen by a reforming process. The reservoir that is connected to the fuel cell has an indicia (19) that is readable by a human user of the portable electronic device, for measuring the amount of liquid hydrocarbon fuel that is present in the reservoir. Typically, the indicia consist of a sight glass, a capacitive element, a resistive element, a transparent portion of the reservoir, a float, or an acoustic transmitter coupled with an acoustic receiver.
摘要:
Oxides of carbon and other impurities are removed from a hydrogen fuel supply stream (12) for a fuel cell (30). A getter element (20) sufficient for chemisorbing the oxides of carbon from the hydrogen is removably connected to the fuel cell anode side. The fuel stream is passed through the getter element so as to chemisorb the oxides of carbon onto the getter, thereby providing a purified stream of hydrogen (26) to the fuel cell anode. The getter is removed from the fuel cell when the getter is spent and replaced with a fresh getter.
摘要:
A method and apparatus for managing thermal performance of a fuel cell system having a fuel cell assembly and a fuel storage container is disclosed. The fuel cell system 100 consists of one or more fuel cells 110, each having a major surface 140, and disposed next to each other in a side-by-side adjacent arrangement and a fuel storage container 120 having an exterior wall 150. The fuel cells 110 are positioned such that distance between the major surfaces 140 and the fuel storage container wall 150 along a direction normal to the major surfaces is substantially the same. In addition, one or more of the fuel cells are in thermal contact with the fuel storage container such that cell waste heat is transferred to the fuel storage container.
摘要:
A direct methanol fuel cell system 100 uses dissolved catalyst to promote a fuel cell reaction that takes place in an anode sub-chamber 110 of a fuel cell 102. According to the preferred embodiment the dissolved catalyst comprises a macro cyclic coordinated compound of platinum. The dissolved catalyst is preferably continuously circulated through the anode sub-chamber 110, and is preferably mixed in a mixing valve 118 with methanol and water in order to promote its catalytic action.
摘要:
A method of diluting reacted fuel gas that is exhausted from a fuel cell. The reacted fuel gas is transferred from the fuel cell (10) into a hydrogen diluting mechanism (16) prior to release into the atmosphere, so that when the reacted fuel gas is subsequently released into the atmosphere, the percentage of hydrogen immediately surrounding the fuel cell does not exceed 4 percent by volume.
摘要:
A method and apparatus for managing the performance of a fuel cell system (100) using an agitation means (150). The method of managing the performance involves, monitoring operational parameters (110) of individual fuel cells and the overall fuel cell system, comparing performance parameters (120) of the system against target values, selecting a control method (130) from a set of available control methods based on the result of comparison of the performance parameters against the target values and using that control method to initiate and control an agitation process, and actuating (140) an agitation means using the selected control method so as alter the monitored operational parameters (160).
摘要:
The invention provides a device for generating energy, utilizing a fuel cell. Air is freely guided to the fuel cell, while a fuel gas is provided to the fuel cell from a pressurized fuel supply via a regulator. The portable power supply is most applicable to use with handheld electric devices, and contains a fuel storage means (110) for storing a supply of fuel, a fuel delivery means (120) connected to the fuel storage means, an energy conversion device (140) connected to the fuel delivery means for converting the fuel to electricity. The fuel storage means, the fuel delivery means, and the energy conversion device are all contained in a volume less than 500 cubic centimeters.
摘要:
A fuel cell device has a composite particle electrode (200) formed using particles (210) having a combination of ion conductor material, electron conductor material, and catalyst material. Each composite particle (210) is preferably formed to have a substantially spherical outer layer (480) of ion conductor material (481) with conductive and catalyst particles (482, 484) are dispersed throughout the outer layer (480). An array of composite particles (210) is layered in a substantially structured or ordered manner on a membrane support structure (220) to form the fuel cell electrode. A fuel cell electrode so formed has interstitial gaps between the composite particles that result in a structure permeable to oxygen and other fluids.
摘要:
An apparatus and method for temperature regulation of a fuel cell using differential heat capacity of the fuel storage media is disclosed. The method of regulating the temperature involves measuring the temperature of one or more fuel cells, comparing the temperature against target values, selecting a control method from a set of available control methods based on the result of comparison and using that control method to initiate and control a regulation cycle, and actuating a flow control means using the selected control method to alter the flow of fuel between one or more fuel storage containers, each containing fuel storage media which exhibit different enthalpies of formation and dissociation. The regulation process starts with measuring temperature (110) of a fuel cell system (100). The measured temperature is then compared (120) to a predetermined set of ideal target values designed to provide peak fuel cell performance. Following the comparison step, a control method (130) is selected from a list of available control methods. The control method has the necessary parameters and logic to define an fuel flow initiation process (140) which in turn actuates a flow control means (150). Actuation of the flow control means changes the temperature of the one or more fuel cells and alters its operating parameters (160).
摘要:
An apparatus and method for measuring the quantity of hydrogen in a hydrogen storage vessel of a hydrogen fuel cell using the Pressure, Composition, Temperature (PCT) relationship of the storage media is disclosed. The method of measuring the quantity of hydrogen involves, measuring the temperature 310 of the hydrogen storage media at one or more points on the hydrogen storage vessel 300, measuring the mechanical strain 320 at one or more points on the hydrogen storage vessel, computing the pressure 330 inside the vessel based on the strain measurements, referring to a lookup table 340 or an equation representing the discharge PCT curve for the particular composition of the hydrogen storage media at the measured temperature and computing the hydrogen concentration at the measured pressure. The changes in temperature and pressure during hydrogen absorption-desorption which are characteristic of hydride storage media air is used to measure the hydrogen concentration in the storage vessel and the hydrogen to metal hydride.