摘要:
A static induction transistor fabricated of silicon carbide, preferably 6H polytype, although any silicon carbide polytype may be used. The preferred static induction transistor is the recessed Schottky barrier gate type. Thus, a silicon carbide substrate is provided. Then, a silicon carbide drift layer is provided upon the substrate, wherein the drift layer has two spaced-apart protrusions or fingers which extend away from the substrate. Each protrusion of the drift layer has a source region of silicon carbide provided thereon. A gate material is then provided along the drift layer between the two protrusions. A conductive gate contact is provided upon the gate material and a conductive source contact is provided upon each source region. A conductive drain contact is provided along the substrate. Other gate types for the static induction transistor are contemplated. For example, a planar Schottky barrier gate may be employed. Furthermore, recessed or planar MOS gates may be utilized, as may a PN junction gate.
摘要:
A static induction transistor having source, drain and gate regions. Channel regions are defined between adjacent gates and a drift region is defined from the ends of the channel regions to the drain. The channel and drift regions have predetermined doping concentrations with the doping concentration of the channel regions being greater than the doping concentration of the drift region.
摘要:
A static induction transistor having a silicon carbide substrate upon which is deposited a silicon carbide layer arrangement. The layer arrangement has a plurality of spaced gate regions for controlling current flow from a source region to a drain region vertically spaced from the source region by a drift layer. The pitch distance p between gate regions is 1 to 5 microns and the drift layer thickness d is also 1 to 5 microns.In one embodiment the source regions are positioned alternatively with the gate regions and are formed in a top layer of high doping concentration. In another embodiment the gate regions are ion implanted in the layer arrangement.In another embodiment the structure includes a dual oxide layer covering gate and source or drain regions, and in yet another embodiment contacts for the drain, source and gate regions are located on the same side of the substrate member.
摘要:
A static induction transistor includes a substrate and a drift layer with different doping levels. At least two mesas are formed on the drift layer and a heavily doped region is positioned on a top surface of each of the mesas. A gate contact extends along a bottom of a recess between the mesas and along a side of each of the mesas forming the recess. The gate contact also extends along a portion of the top surface of each of the mesas. In one embodiment of the invention, a notch is formed in the top surface of the mesas between the gate contact and the heavily doped region.
摘要:
A method of aligning a gate and a source of a silicon carbide static induction transistor comprising the steps of depositing an oxide layer over the transistor, forming oxide spacers from the oxide layer where the oxide spacers are adjacent the source, depositing a metal layer over the transistor and removing the oxide spacers so that the resulting gates are accurately aligned with the source.
摘要:
A non-volatile random access memory (NVRAM) cell that utilizes a simple, single-transistor DRAM cell configuration. The present NVRAM employs an enhancement mode nMOS transistor made as an accumulation mode transistor. The transistor has an n-type silicon carbide channel layer on a p-type silicon carbide buffer layer, with the channel and buffer layers being on a highly resistive silicon carbide substrate. The transistor also has n+ source and drain contact regions on the channel layer. A polysilicon/oxide/metal capacitor is preferably used which has a very low leakage current. Furthermore, this type of capacitor can be stacked on top of the transistor to save area and achieve high cell density. It is preferred to use a non-reentrant (edgeless) gate transistor structure to further reduce edge effects.