摘要:
The present disclosure relates to an RF power amplifier (PA) power supply that includes a series pass circuit coupled across a direct current (DC)-to-DC converter to receive a power supply input signal, such as provided from a battery, to provide a power supply output signal to at least a first RF PA based on an output setpoint. Control circuitry selects between a switching supply operating mode and a non-switching supply operating mode based on the output setpoint. During the switching supply operating mode, the DC-to-DC converter provides the power supply output signal and during the non-switching supply operating mode, the series pass circuit provides the power supply output signal.
摘要:
The present invention is a parallel RF amplifier circuit that selects between a high power side (HPS) and a low power side (LPS), depending upon output power. A chain matching network couples an LPS output to an HPS output for improved efficiency at lower output power. When the HPS is selected, the LPS output is disabled, and when the LPS is selected, the HPS output is disabled When the HPS is selected, large signal voltage swings from the collector of the HPS amplifier may be multiplied through the chain matching network, and may cause negative voltage swings at the LPS collector, which may degrade linearity and efficiency of the HPS amplifier by driving currents into the disabled LPS amplifier. Therefore, the present invention includes LPS bias circuitry to minimize impacts of negative voltage swings at the LPS output.
摘要:
A high efficiency multiple power level power amplifier has a PIN diode network that selectively associates an impedance transformation network with an interstage impedance matching network to maintain desired gain and linearity characteristics for the power amplifier at different output power levels. The PIN diode network in the off mode (high power), has a high breakdown voltage and high series resistance thereby reducing distortion components. The PIN diode network in the on mode (low power), has a low series resistance thereby reducing insertion losses.
摘要:
A monolithic integrated circuit die (10) is fabricated to include unilateral FETs (113, 114, 115), RF passive devices such as a double polysilicon capacitor (57), a polysilicon resistor (58), and an inductor (155), and an ESD protection device (160). A first P.sup.+ sinker (28) provides signal isolation between two FETs (113, 115) separated by the first sinker (28) and is coupled to a source region (86) of a power FET (115) via a self-aligned titanium silicide structure (96). A second P.sup.+ sinker (29) is coupled to a bottom plate (44) of the double polysilicon capacitor (57). A third P+ sinker (178) is coupled to a source region (168) of the ESD protection device (160) via another titanium silicide structure (174).
摘要:
The present disclosure relates to a radio frequency (RF) switch that includes multiple body-contacted field effect transistor (FET) elements coupled in series. The FET elements may be formed using a thin-film semiconductor device layer, which is part of a thin-film semiconductor die. Conduction paths between the FET elements through the thin-film semiconductor device layer and through a substrate of the thin-film semiconductor die may be substantially eliminated by using insulating materials. Elimination of the conduction paths allows an RF signal across the RF switch to be divided across the series coupled FET elements, such that each FET element is subjected to only a portion of the RF signal. Further, each FET element is body-contacted and may receive reverse body biasing when the RF switch is in an OFF state, thereby reducing an OFF state drain-to-source capacitance of each FET element.
摘要:
The present disclosure relates to RF power amplifier circuitry that may operate as either a Class AB amplifier or as a Class B amplifier based on a magnitude of RF output power provided by the RF power amplifier circuitry. A transistor bias circuit in the RF power amplifier circuitry may control transitioning between operating as the Class AB amplifier and operating as the Class B amplifier. When the magnitude of the RF output power is below a first threshold, the RF power amplifier circuitry may operate as a Class AB amplifier, and when the magnitude of the RF output power is above the first threshold, the RF power amplifier circuitry may operate as a Class B amplifier.
摘要:
The present disclosure relates to RF power amplifier circuitry that may include a source termination circuit, a load termination circuit, or both used in an unconventional manner to shape amplitude-based amplitude modulation (AM-AM) distortion, amplitude-based phase modulation (AM-PM) distortion, or both to extend a linear operating range of the RF power amplifier circuitry. Conventional RF power amplifier circuitry may operate as a Class F RF power amplifier, which may use termination circuits to create impedance valleys at even harmonics of an RF carrier frequency to improve a saturated efficiency of the RF power amplifier circuitry. However, the termination circuits of the present disclosure may create impedance valleys that are not at even harmonics of an RF carrier frequency to shape amplitude-based distortion, thereby extending a linear operating range of the RF power amplifier circuitry.
摘要:
A two stage power amplifier circuit that employs both a DC to DC converter and sliding bias controller to improve power amplifier efficiency. The control signal that is generated by the power detector circuit to control the input voltage to the DC to DC converter is also used to provide the reference voltage that controls the sliding bias controller. The sliding bias controller reduces the quiescent current of the power amplifiers by reducing the bias currents, and thus the DC voltage at lower power output levels driving the power amplifiers. This causes the power amplifiers to operate at or near higher efficiency Class B operation at lower power output levels. As the power level increases, the sliding bias controller reduces its control on the bias currents so that the power amplifier can be driven at necessary higher power output levels.