摘要:
Mutual compatibility is established between the measurement with a high magnification and the measurement in a wide region. A pattern measurement apparatus is proposed which adds identification information to each of fragments that constitute a pattern within an image obtained by the SEM, and which stores the identification information in a predetermined storage format. Here, the identification information is added to each fragment for distinguishing between one fragment and another fragment. According to the above-described configuration, it turns out that the identification information is added to each fragment on the SEM image which has possessed no specific identification information originally. As a result, it becomes possible to implement the SEM-image management based on the identification information.
摘要:
Mutual compatibility is established between the measurement with a high magnification and the measurement in a wide region. A pattern measurement apparatus is proposed which adds identification information to each of fragments that constitute a pattern within an image obtained by the SEM, and which stores the identification information in a predetermined storage format. Here, the identification information is added to each fragment for distinguishing between one fragment and another fragment. According to the above-described configuration, it turns out that the identification information is added to each fragment on the SEM image which has possessed no specific identification information originally. As a result, it becomes possible to implement the SEM-image management based on the identification information.
摘要:
Mutual compatibility is established between the measurement with a high magnification and the measurement in a wide region. A pattern measurement apparatus is proposed which adds identification information to each of fragments that constitute a pattern within an image obtained by the SEM, and which stores the identification information in a predetermined storage format. Here, the identification information is added to each fragment for distinguishing between one fragment and another fragment. According to the above-described configuration, it turns out that the identification information is added to each fragment on the SEM image which has possessed no specific identification information originally. As a result, it becomes possible to implement the SEM-image management based on the identification information.
摘要:
Mutual compatibility is established between the measurement with a high magnification and the measurement in a wide region. A pattern measurement apparatus is proposed which adds identification information to each of fragments that constitute a pattern within an image obtained by the SEM, and which stores the identification information in a predetermined storage format. Here, the identification information is added to each fragment for distinguishing between one fragment and another fragment. According to the above-described configuration, it turns out that the identification information is added to each fragment on the SEM image which has possessed no specific identification information originally. As a result, it becomes possible to implement the SEM-image management based on the identification information.
摘要:
One of principal objects of the present invention is to provide a sample dimension measuring method for detecting the position of an edge of a two-dimensional pattern constantly with the same accuracy irrespective of the direction of the edge and a sample dimension measuring apparatus. According to this invention, to accomplish the above object, it is proposed to correct the change of a signal waveform of secondary electrons which depends on the direction of scanning of an electron beam relative to the direction of a pattern edge of an inspection objective pattern. It is proposed that when changing the scanning direction of the electron beam in compliance with the direction of a pattern to be measured, errors in the scanning direction and the scanning position are corrected. In this configuration, a sufficient accuracy of edge detection can be obtained irrespective of the scanning direction of the electron beam.
摘要:
One of principal objects of the present invention is to provide a sample dimension measuring method for detecting the position of an edge of a two-dimensional pattern constantly with the same accuracy irrespective of the direction of the edge and a sample dimension measuring apparatus. According to this invention, to accomplish the above object, it is proposed to correct the change of a signal waveform of secondary electrons which depends on the direction of scanning of an electron beam relative to the direction of a pattern edge of an inspection objective pattern. It is proposed that when changing the scanning direction of the electron beam in compliance with the direction of a pattern to be measured, errors in the scanning direction and the scanning position are corrected. In this configuration, a sufficient accuracy of edge detection can be obtained irrespective of the scanning direction of the electron beam.
摘要:
One of principal objects of the present invention is to provide a sample dimension measuring method for detecting the position of an edge of a two-dimensional pattern constantly with the same accuracy irrespective of the direction of the edge and a sample dimension measuring apparatus. According to this invention, to accomplish the above object, it is proposed to correct the change of a signal waveform of secondary electrons which depends on the direction of scanning of an electron beam relative to the direction of a pattern edge of an inspection objective pattern. It is proposed that when changing the scanning direction of the electron beam in compliance with the direction of a pattern to be measured, errors in the scanning direction and the scanning position are corrected. In this configuration, a sufficient accuracy of edge detection can be obtained irrespective of the scanning direction of the electron beam.
摘要:
One of principal objects of the present invention is to provide a sample dimension measuring method for detecting the position of an edge of a two-dimensional pattern constantly with the same accuracy irrespective of the direction of the edge and a sample dimension measuring apparatus. According to this invention, to accomplish the above object, it is proposed to correct the change of a signal waveform of secondary electrons which depends on the direction of scanning of an electron beam relative to the direction of a pattern edge of an inspection objective pattern. It is proposed that when changing the scanning direction of the electron beam in compliance with the direction of a pattern to be measured, errors in the scanning direction and the scanning position are corrected. In this configuration, a sufficient accuracy of edge detection can be obtained irrespective of the scanning direction of the electron beam.
摘要:
An evaluation method and apparatus is provided for evaluating a displacement between patterns of a pattern image by using design data representative of a plurality of patterns superimposed ideally. A first distance is measured for an upper layer pattern between a line segment of the design data and an edge of the charged particle radiation image, a second distance is measured for a lower layer pattern between a line segment of the design data and an edge of the charged particle radiation image; and an superimposition displacement is detected between the upper layer pattern and lower layer pattern in accordance with the first distance and second distance.
摘要:
An evaluation method and apparatus is provided for evaluating a displacement between patterns of a pattern image by using design data representative of a plurality of patterns superimposed ideally. A first distance is measured for an upper layer pattern between a line segment of the design data and an edge of the charged particle radiation image, a second distance is measured for a lower layer pattern between a line segment of the design data and an edge of the charged particle radiation image; and an superimposition displacement is detected between the upper layer pattern and lower layer pattern in accordance with the first distance and second distance.