摘要:
A method for determining time constants for acceleration and deceleration of a servomotor to be set in preparing a track program for an industrial robot. In setting the time constants, they are calculated in consideration of torques generated due to interference with other axes, which is caused as a plurality of axes are actuated simultaneously when the robot moves on desired tracks. As a result, the torques will not be saturated despite influences, if any, of interference torques, so that there is no possibility of tracks being deflected, and cycle times can be shortened by assigning relatively short time constants in the case where the influences of the interference torques are not substantial.
摘要:
A method of tracking a robot with respect to a circularly moving workpiece W. When a workpiece on a disc-shape conveyer remains stationary at a reference position W0, positions P0 and Q0 are taught to the robot in a stationary coordinate system .SIGMA.0 and the robot is placed on stand-by at a position A. The angular displacement of the disc-shape conveyer is detected by a pulse encoder and counting of the output pulses starts when the workpiece W arrives at the reference position W0. A CPU of a robot controller reads the counted amount in a short cycle and transforms it into a rotation amount .theta. of the conveyer from the reference position. Updating of matrix data for setting a rotary coordinate system .SIGMA.rot based on the rotation amount .theta. is repeated. When the workpiece W reaches the reference position W0, the CPU executes interpolation calculation for successively determining a target point to which the robot is moved, based on the position data of the waiting position and the position data of teaching points P0 and Q0. The position data obtained by the interpolation calculation in the rotary coordinate system .SIGMA.rot is converted into the position data in the stationary coordinate system .SIGMA.0 and the position of the robot is controlled based on thus obtained position data.
摘要:
A tool posture control method for a robot is provided, which is capable of always controlling the posture of a tool as intended, between a starting point and an ending point of operation, in moving the tool from the starting point toward the ending point along a straight line or a circular arc. Based on positions and postures of the tool at a starting point and an ending point, previously given to the robot for instruction, and a tool position at an intermediate point, additionally given as required for instruction, a control device calculates (S2) a first angle formed between the tool and a datum plane, at the starting point, a second angle formed between the tool projected on the datum plane and a datum line set on the datum plane, at the startingt point, and the rotational position of the tool at the starting point around a tool axis, and then calculates (S3) the first angle, the second angle, and the rotational position around the tool axis, at the ending point. Thereafter, the control device interpolates (S4) the tool position, the first angle, the second angle, and the rotational position around the tool axis, between the starting and ending points, and distributes (S6) pulses to servo circuits for driving servomotors, in accordance with the result of the interpolation, thereby controlling the position and posture of the tool between the starting and ending points.
摘要:
A velocity control apparatus according to the invention controls velocity when moving the movable element of a robot hand or NC machine tool and includes velocity override control for changing the movable element command velocity at a predetermined rate, and acceleration/deceleration circuits (2X, 2Y) of a time constant inversely proportional to a velocity set by the override control. When the amount of a velocity override is changed, the time constant of the acceleration/deceleration circuits (2X, 2Y) is altered in dependence upon the commanded velocity, and an accumulated quantity of command pulses at the time of acceleration/deceleration is controlled so as to be held constant. This makes it possible to control movement at a predetermined velocity without changing the trajectory of the movable element at a corner portion.
摘要:
An industrial robot arc control method subjects the position of a working member to circular-arc control by interpolation while controlling the target angle of the working member with respect to a surface to be worked, which working member is mounted on the wrist of an industrial robot. The industrial robot circular arc control method includes obtaining corresponding points (P1, P2 . . . ; Q1, Q2 . . . ;) of the tip and base of the working member (TC) at plural taught points for circular-arc control of the tip of the working member, which is mounted on a wrist (HD) of the robot, finding interpolated points of the tip and base of the working member by interpolation from the corresponding taught points, and obtaining command quantities for the motion axes of the robot from the interpolated points.
摘要:
A robot control unit 42 and an image processing control unit (control unit of the image processing apparatus) 43 are incorporated into a robot controller 40. A camera CM is connected to the image processing control unit 43. A main body 1 of a robot is connected to the robot control unit 42 through an amplifier 41. A portable robot teaching pendant 80 connected to the robot control unit 42 is provided with a monitor display, and functions also as a teaching pendant of the image processing apparatus. Therefore, by using the teaching pendant 80, manipulation of image processing, and issuing of an instruction to a program for processing an image can be performed. Furthermore, an image obtained by a camera CM, and information relevant to the manipulation of the image processing apparatus such as an operation menu, etc. can be displayed on the monitor display. Therefore, an operator can efficiently perform all operations relevant to the robot, the camera, processing an image, etc. while watching a monitor screen.
摘要:
A vertical revolute joint robot having an offset wrist, which is capable of rapidly calculating respective joint angles on the basis of a target position and orientation of an end effector, and hence is excellent in operation accuracy.A robot arm consists of first to third links, and the joint axis (Y0) of a first joint (1), which couples a base fixedly disposed within an operation space to the first link, extends perpendicularly to the axis of the base, whereas the joint axis (Z1) of a second joint (2), which couples the first and second links to each other, extends along the axis of the first link. The third link is mounted with a wrist offset relative to the arm, and an end effector is mounted on the offset wrist. A computer provided in the robot calculates a fist joint angle (.theta.1) in accordance with an arithmetic equation, which is fulfilled between corresponding ones of transformation matrices employed for coordinate transformation among zeroth to sixth coordinate systems respectively set for first to sixth joints (1)-(6) and an end effector mounting face center, the equation being represented as a function of vector components indicative of the position of the origin of the sixth coordinate system with respect to the zeroth coordinate system and determinable from target position and orientation of the end effector, link lengths determined in dependence on the robot arrangement, and offset distances (d2-d4). The computer calculates other joint angles (.theta.2-.theta.6) in accordance with similar arithmetic equations.
摘要:
A method for acceleration and deceleration control of servomotors always brings out the maximum operating capability of a machine equipped with servomotors, such as a robot, NC machine tool, etc. and accurately moves a respective operating section of the machine, e.g., robot work point, tool, etc., along a commanded path. When a command is read from a program, the speed command value is divided by a maximum allowable (Am) of the machine, set previously, to determine a time constant (T) for acceleration and deceleration control (Step S2), and the time constant is divided by a sampling period to obtain a number (n) of times of commanded speed sampling (Step S3). The servomotor is driven at a controlled speed after the acceleration/deceleration process. The controlled speed is obtained by dividing a sum of a commanded speed of the current sampling period and commanded speeds sampled in the previous (n-1) periods preceding the current period, by the number (n) of times of sampling. Thus, accelerated and decelerated operations of the machine are always performed at the maximum allowable acceleration/deceleration, whereby the maximum operating capability of the machine is available and the respective machine operating section can be moved accurately along the commanded path.
摘要:
There is provided a track control method for a robot, in which a welding operation can be executed by moving a workpiece along a predetermined track, with respect to a fixed welding torch. The welding torch (1) is disposed fixedly, while the workpiece (W) is held by means of a robot hand. Before starting the welding operation, the workpiece is located at each target point (a1, a2), and a workpiece coordinate position (T1, T2) corresponding to a hand operating position, at each target point, is taught. During the welding operation, a playback function of the robot is utilized for driving various robot operating sections, including robot arms and a robot hand, so that positions to which the workpiece is moved are coincident with a series of calculated workpiece coordinate positions. Thereupon, the welding is performed along the predetermined track on the workpiece as the workpiece moves, despite the change of the position of the workpiece relative to the distal end of an arm (4).
摘要:
There is provided a measurement device being capable of obtaining an image being free from a distortion even if the position of a measurement object varies in image pickup and being capable of performing a precise measurement according to the image. Camera calibration is executed by using a dot pattern or the like, and parameters of a camera model are stored (S1). The image of a reference object is fetched (S2), a corrected reference image being free from a lens distortion and a distortion caused by image pickup in a diagonal direction is formed on the basis of the equation of the camera model (S3), and parameters for detecting the measurement object are set in accordance with the image (S4). In a system operation, the image of the measurement object, the position of which varies, is acquired (S5), and the corrected reference image being free from a distortion as in S3 is formed (S6). The measurement object is detected by using the parameters for detecting the measurement object (S7, S8), necessary data for an application is formed and output (S9). In failure to perform detection, an appropriate message is output (S10, S11).