Abstract:
Photoactive additives are disclosed. The additive is formed from the reaction of a dihydroxybenzophenone, one or more linker moieties having functional groups that react with the phenolic groups, a diol chain extender, and an end-capping agent. If desired, a secondary linker moiety can be used. When added to a base polymeric resin, the photoactive additive permits crosslinking when exposed to ultraviolet light.
Abstract:
Processes for increasing the chemical resistance of a surface of a formed product are disclosed. The formed product is produced from a polymeric composition comprising a photoactive additive containing photoactive groups derived from a dihydroxybenzophenone. The surface of the formed product is then exposed to ultraviolet light to cause crosslinking of the photoactive additive and produce a crosslinked surface. The crosslinking enhances the chemical resistance of the surface. Various means for controlling the depth of the crosslinking are also discussed.
Abstract:
In an embodiment, a reflector comprises a polycarbonate composition, the polycarbonate composition comprises: polycarbonate; 10 wt % to 20 wt % titanium dioxide, based upon a total weight of the polycarbonate composition; an optional flame retardant; and an optional UV stabilizer. A plaque formed from the polycarbonate composition has a reflectance of greater than or equal to 95%, as determined by reflectance measurements using a Gretag Macbeth Coloreye spectrophotometer (D65 light source, 10 degree observer, UV included) made at a wavelength of 680 nm. A molded article of the polycarbonate has transmission level greater than or equal to 90.0% at 2.5 mm thickness as measured by ASTM D1003-00 and a yellow index (YI) less than or equal to 1.5 as measured by ASTM D1925.
Abstract:
Photoactive additives, such as cross-linkable polycarbonate resins, are disclosed. The additive is formed from the reaction of a monohydroxybenzophenone, a dihydroxybenzophenone, a diol chain extender, and one or more linker moieties having functional groups that react with the phenolic groups on the other ingredients. If desired, a secondary linker moiety and/or an end-capping agent can be used. When added to a base polymeric resin, the photoactive additive permits crosslinking when exposed to ultraviolet light.
Abstract:
In an embodiment, a reflector comprises a polycarbonate composition, the polycarbonate composition comprises: polycarbonate; 10 wt % to 20 wt % titanium dioxide, based upon a total weight of the polycarbonate composition; an optional flame retardant; and an optional UV stabilizer. A plaque formed from the polycarbonate composition has a reflectance of greater than or equal to 95%, as determined by reflectance measurements using a Gretag Macbeth Coloreye spectrophotometer (D65 light source, 10 degree observer, UV included) made at a wavelength of 680 nm. A molded article of the polycarbonate has transmission level greater than or equal to 90.0% at 2.5 mm thickness as measured by ASTM D1003-00 and a yellow index (YI) less than or equal to 1.5 as measured by ASTM D1925.