Abstract:
Disclosed herein are compositions including a cross-linked polycarbonate. The cross-linked polycarbonate may be derived from a polycarbonate having about 0.5 mol % to about 5 mol % endcap groups derived from a monohydroxybenzophenone. A plaque including the composition can achieve a UL94 5VA rating. Also disclosed herein are articles including the compositions, methods of using the compositions, and processes for preparing the compositions.
Abstract:
Different interfacial processes for producing photoactive additives are disclosed. Generally, the photoactive additives are formed from a photoactive moiety, a first linker moiety, and a diol chain extender. The resulting additives can be crosslinked with other polymers upon exposure to UV radiation.
Abstract:
A composition comprising: a first polycarbonate comprising a poly(siloxane-carbonate); a second polycarbonate different from the first polycarbonate; and optionally, a third polycarbonate different from the first and second polycarbonate; wherein the first polycarbonate is present in an amount effective to provide the siloxane units of in the first polycarbonate in an amount of at least 0.3 wt %, and the second polycarbonate is present in an amount effective to provide the bromine of the second polycarbonate in an amount of at least 7.8 wt %; and further wherein an article molded from the composition has an OSU integrated 2 minute heat release test value of less than 65 kW-min/m2 and a peak heat release rate of less than 65 kW/m2, and an E662 smoke test Dmax value of less than 200.
Abstract:
Photoactive additives, such as cross-linkable polycarbonate resins, are disclosed. The additive is formed from the reaction of a monohydroxybenzophenone, a dihydroxybenzophenone, a diol chain extender, and one or more linker moieties having functional groups that react with the phenolic groups on the other ingredients. If desired, a secondary linker moiety and/or an end-capping agent can be used. When added to a base polymeric resin, the photoactive additive permits crosslinking when exposed to ultraviolet light.
Abstract:
A composition comprising: a first polycarbonate comprising a poly(siloxane-carbonate); a second polycarbonate different from the first polycarbonate; and optionally, a third polycarbonate different from the first and second polycarbonate; wherein the first polycarbonate is present in an amount effective to provide the siloxane units of in the first polycarbonate in an amount of at least 0.3 wt %, and the second polycarbonate is present in an amount effective to provide the bromine of the second polycarbonate in an amount of at least 7.8 wt %; and further wherein an article molded from the composition has an OSU integrated 2 minute heat release test value of less than 65 kW-min/m2 and a peak heat release rate of less than 65 kW/m2, and an E662 smoke test Dmax value of less than 200.
Abstract translation:一种组合物,其包含:包含聚(硅氧烷 - 碳酸酯)的第一聚碳酸酯; 不同于第一聚碳酸酯的第二聚碳酸酯; 和任选地,不同于第一和第二聚碳酸酯的第三聚碳酸酯; 其中所述第一聚碳酸酯以有效提供至少0.3重量%的量的所述第一聚碳酸酯中的硅氧烷单元的量存在,并且所述第二聚碳酸酯以有效提供第二聚碳酸酯的溴的量存在于 至少7.8wt%的量; 并且其中由所述组合物成型的制品具有小于65kW-min / m 2的OSU集成的2分钟的热释放试验值和小于65kW / m 2的峰值放热率,以及E662烟雾试验Dmax值 小于200。
Abstract:
Processes for preparing high purity polycarbonates having high light transmission, low yellowness, and color stability are disclosed herein. High purity starting ingredients are used to form a polycarbonate powder. The polycarbonate powder can be subsequently melt extruded at an optimum shear rate to minimize yellowness and the need to add colorant to overcome the yellowness. The lower amount of colorant increases the light transmission of the resulting polycarbonate resin.
Abstract:
Processes for preparing high purity polycarbonates having high light transmission, low yellowness, and color stability are disclosed herein. High purity starting ingredients are used to form a polycarbonate powder. The polycarbonate powder can be subsequently melt extruded at an optimum shear rate to minimize yellowness and the need to add colorant to overcome the yellowness. The lower amount of colorant increases the light transmission of the resulting polycarbonate resin.
Abstract:
Different interfacial processes for producing photoactive additives are disclosed. Generally, the photoactive additives are formed from a photoactive moiety, a first linker moiety, and a diol chain extender. The resulting additives can be crosslinked with other polymers upon exposure to UV radiation.
Abstract:
Different interfacial processes for producing photoactive additives are disclosed. Generally, the photoactive additives are cross-linkable polycarbonate resins formed from a dihydroxybenzophenone, a first linker moiety, a diol chain extender, and an end-capping agent. The resulting additives can be crosslinked with other polymers upon exposure to UV radiation.
Abstract:
Photoactive additives are disclosed. The additive is formed from the reaction of a dihydroxybenzophenone, one or more linker moieties having functional groups that react with the phenolic groups, a diol chain extender, and an end-capping agent. If desired, a secondary linker moiety can be used. When added to a base polymeric resin, the photoactive additive permits crosslinking when exposed to ultraviolet light.