Abstract:
A process for manufacturing an electrochromic glazing unit includes forming, on one face of a glass sheet, a complete all-solid-state electrochromic stack including in succession a first layer of a transparent conductive oxide; a layer of a cathodically colored mineral electrochromic material to form an electrochromic electrode; a layer of an ionically conductive mineral solid electrolyte; a layer of a cation intercalation material to form a counter electrode; and a second layer of a transparent conductive oxide; then heat treatment of the complete electrochromic stack by irradiation with radiation having a wavelength comprised between 500 and 2000 nm, the radiation originating from a radiating device placed facing the electrochromic stack, a relative movement being created between the radiating device and the substrate so as to raise the electrochromic stack to a temperature at least equal to 300° C. for a brief duration, for example shorter than 100 milliseconds.
Abstract:
A process for the manufacture of a material including a glass or glass-ceramic substrate provided, on at least one of its faces, with a stack of thin layers including a functional layer based on indium tin oxide, the process including successively depositing the functional layer and then, under a pressure of at most 2.5 μbar, an oxygen barrier layer by magnetron cathode sputtering on the at least one face of the substrate.
Abstract:
A process for activating a layer supported by a glass substrate includes carrying out a heat treatment in a chamber of a stack of several examples of the glass substrate, the glass substrates being separated by an interlayer powder. The layer to be activated may be an ITO layer, or a titanium oxide layer, or an SiO2 layer, or a silver layer.
Abstract:
A process for obtaining an item including a substrate made of glass or glass ceramic coated on at least one portion of at least one of its faces with a stack of thin-layers including no silver layers and including at least one thin layer of a transparent electrically conductive oxide, the process including: a step of depositing the stack, in which step the thin layer of a transparent electrically conductive oxide and at least one thin homogenizing layer are deposited, the thin homogenizing layer being a metal layer or a layer based on a metal nitride other than aluminum nitride, or a layer based on metal carbide; then a heat treatment step in which the stack is exposed to radiation.