Abstract:
A manufacturing method of an organic light emitting diode (OLED) display is disclosed. The manufacturing method in accordance with an exemplary embodiment includes: preparing a flexible substrate and a display panel including a thin film encapsulation (TFE) layer for covering and protecting an OLED formed on the flexible substrate; attaching a first protection film to the TFE layer by using a first adhesive to be opposite to the TFE layer; heating a second protection film; and pressing and attaching a second protection film onto the flexible substrate by using a second adhesive.
Abstract:
A display device includes: a display module; a plate positioned on a rear surface of the display module; and a digitizer positioned on a rear surface of the plate. The plate includes a first layer, a second layer, and a third layer each including carbon fiber reinforced plastic, and a fiber area weight (FAW) of the second layer is 100 g/m2 to 150 g/m2.
Abstract:
A display device includes a display panel having a front surface where images are displayed; a rear-side layer disposed on a rear surface of the display panel, including a plurality of conductive patterns and having first surface unevenness on a front surface thereof; and a support plate disposed between the display panel and the rear-side layer and having a flat surface on a front surface thereof. The support plate includes glass or ceramic.
Abstract:
A method for fabricating a display device is provided. A laser having a power density is provided to a substrate coupling body. The substrate coupling body includes a first substrate and a second substrate coupled to the first substrate. The second substrate is separated from the first substrate. An optical property of the first substrate separated from the second substrate is measured. The power density of the laser is adjusted based on the optical property of the first substrate.
Abstract:
A display device includes a display panel configured to display an image on a first surface thereof, a digitizer layer disposed on a second surface opposite to the first surface of the display panel and including first electrode patterns configured to generate a magnetic field and second electrode patterns configured to generate a magnetic field, a shield member disposed on a first surface of the digitizer layer, and a rigid member between the display panel and the shield member.
Abstract:
A display device includes a display panel configured to display an image on a first surface thereof, a digitizer layer disposed on a second surface opposite to the first surface of the display panel and including first electrode patterns configured to generate a magnetic field and second electrode patterns configured to generate a magnetic field, a shield member disposed on a first surface of the digitizer layer, and a rigid member between the display panel and the shield member.
Abstract:
A method for fabricating a display device is provided. A laser having a power density is provided to a substrate coupling body. The substrate coupling body includes a first substrate and a second substrate coupled to the first substrate. The second substrate is separated from the first substrate. An optical property of the first substrate separated from the second substrate is measured. The power density of the laser is adjusted based on the optical property of the first substrate.
Abstract:
A foldable display device includes a display panel which includes a folding area, a first non-folding area disposed adjacent to a first side of the folding area, and a second non-folding area disposed adjacent to a second side of the folding area opposite to the first side of the folding area, and a panel support member which is disposed on a surface of the display panel and in which a plurality of slits extending in a first direction is defined. The panel support member includes a first layer which has a first fiber yarn extending in a second direction intersecting the first direction, a second layer which has a second fiber yarn extending in the first direction, and a third layer which has a third fiber yarn extending in the second direction.
Abstract:
A manufacturing method of an organic light emitting diode (OLED) display is disclosed. The manufacturing method in accordance with an exemplary embodiment includes: preparing a flexible substrate and a display panel including a thin film encapsulation (TFE) layer for covering and protecting an OLED formed on the flexible substrate; attaching a first protection film to the TFE layer by using a first adhesive to be opposite to the TFE layer; heating a second protection film; and pressing and attaching a second protection film onto the flexible substrate by using a second adhesive.