Abstract:
A method of manufacturing a display device includes: providing a glass including an edge region and an inner region; arranging a light source under the glass; setting a center position of the light source to correspond to an inside of the edge region or an inside of the inner region of the glass; directing light into the glass by using the light source; and detecting a defect in the edge region of the glass by receiving light passing through the glass by using a detection camera.
Abstract:
In a method of forming a liquid crystal display device, a black matrix is disposed on a substrate including a switching element formed thereon, a color filter is disposed on the switching element, a pixel electrode is electrically connected to the switching element, and a first alignment layer is disposed on the pixel electrode, to form a first substrate. A second substrate including a second alignment layer is formed. At least one of the first alignment layer and the second alignment layer includes a reactive mesogen. A liquid crystal layer is interposed between the first substrate and the second substrate. A light is irradiated onto the second substrate to provide pretilt angles of liquid crystal molecules of the liquid crystal layer.
Abstract:
A rollable display device includes a rollable structure including a plurality of unit structures, a display panel structure attached to the rollable structure, and a plurality of magnetic objects on a bezel region of the rollable structure, wherein respective widths of the unit structures increase in a direction from a first side of the rollable structure to a second side of the rollable structure, wherein the unit structures collectively form first through (n)th rolling cycles, as the rollable structure is rolled, and a (k)th rolling cycle encircles a (k−1)th rolling cycle, and wherein the plurality of magnetic objects aligns the (k)th rolling cycle with the (k−1)th rolling cycle by causing a magnetic attraction between the (k)th rolling cycle and the (k−1)th rolling cycle.
Abstract:
An optical film may include a polarizer configured to linearly polarize a first light to provide a linearly polarized light component. The optical film may further include a first semi-transmissive film overlapping the polarizer, configured to transmit the linearly polarized light component, and configured to reflect a first circularly polarized component of a second light. The first circularly polarized component of the second light may have a first wavelength. The optical film may further include a second semi-transmissive film overlapping the first semi-transmissive film, configured to transmit the linearly polarized light component, and configured to reflect a second circularly polarized component of the second light. The second circularly polarized component of the second light may have a second wavelength that is unequal to the first wavelength.
Abstract:
A display device includes: a substrate including a display area and a folding area positioned in a portion of the display area; a display structure disposed on the substrate; a protection film disposed on the substrate and overlapping the folding area; an adhesive member disposed between the protection film and the substrate, wherein the protection film adheres to the substrate by the adhesive member; a first antistatic layer disposed between the protection film and the adhesive member, wherein the first antistatic layer includes a first compound; a second antistatic layer disposed on a bottom surface of the protection film, wherein the second antistatic layer includes a second compound; and a supporting member disposed on the second antistatic layer, wherein the supporting member includes an opening overlapping the folding area.
Abstract:
A sliding display device includes a housing, a flexible display panel, a first roller, and a second roller. The housing includes a display region between a first edge region and a second edge region. The distance between the first and second edge regions changes as the housing is expanded and contracted. The flexible display panel slides into and out from the housing through the first and second edge regions as the housing expands and contracts. The first and second rollers guide panel regions into and out of empty spaces in the housing. An assistant roller assists in moving one of the panel regions along a non-intersecting path.
Abstract:
A rollable display device includes a rollable structure including a plurality of unit structures, the rollable structure being rollable and unrollable based on the unit structures, and a display panel structure attached to the rollable structure, wherein respective widths of the unit structures increase in a direction from a first side of the rollable structure to a second side of the rollable structure, the first side of the rollable structure being opposite to the second side of the rollable structure, and wherein each of the unit structures includes a metal plate, the metal plate being bent by a bending limit angle in a direction in which the rollable structure is rolled, and a magnetic object on a side region of the metal plate, the magnetic object being magnetically coupled to an adjacent metal plate.
Abstract:
A liquid crystal display includes a substrate including a plurality of pixel areas, a color filter disposed in each of the plurality of pixel areas, and a liquid crystal layer positioned on a pixel electrode and filling a microcavity. A height of the liquid crystal layer corresponding to the color filter having a first color is different from a height of the liquid crystal layer corresponding to the color filter having a second color.
Abstract:
A display device includes: a substrate including a display area and a folding area positioned in a portion of the display area; a display structure disposed on the substrate; a protection film disposed on the substrate and overlapping the folding area; an adhesive member disposed between the protection film and the substrate, wherein the protection film adheres to the substrate by the adhesive member; a first antistatic layer disposed between the protection film and the adhesive member, wherein the first antistatic layer includes a first compound; a second antistatic layer disposed on a bottom surface of the protection film, wherein the second antistatic layer includes a second compound; and a supporting member disposed on the second antistatic layer, wherein the supporting member includes an opening overlapping the folding area.
Abstract:
A display device includes: a substrate including a display area and a folding area positioned in a portion of the display area; a display structure disposed on the substrate; a protection film disposed on the substrate and overlapping the folding area; an adhesive member disposed between the protection film and the substrate, wherein the protection film adheres to the substrate by the adhesive member; a first antistatic layer disposed between the protection film and the adhesive member, wherein the first antistatic layer includes a first compound; a second antistatic layer disposed on a bottom surface of the protection film, wherein the second antistatic layer includes a second compound; and a supporting member disposed on the second antistatic layer, wherein the supporting member includes an opening overlapping the folding area.