Abstract:
A multilayer ceramic electronic component includes: a ceramic body and first and second external electrodes on external surfaces of the ceramic body. The ceramic body includes first and second internal electrodes facing each other with dielectric layers interposed therebetween. The ceramic body includes an active portion in which capacitance is formed and cover portions on upper and lower surfaces of the active portion, respectively. The ratio of the thickness of the first and second external electrodes to the thickness of the cover portion is proportional to the inverse of the cube root of the ratio of the Young's Modulus of each of the first and second external electrodes to the Young's modulus of the cover portion.
Abstract:
A multilayer ceramic capacitor includes a body including a dielectric layer and first and second internal electrodes disposed with the dielectric layer interposed therebetween; first and second through electrodes penetrating the body, connected to the first and second internal electrodes, respectively, and including nickel; first and second external electrodes, and connected to the first through electrode; and third and fourth external electrodes spaced apart from the first and second external electrodes, and connected to the second through electrode. Each of the first to fourth external electrodes includes a sintered electrode including nickel, and a first plating layer and a second plating layer stacked on the sintered electrode in order.
Abstract:
A multilayer ceramic capacitor has a body including first and second internal electrodes laminated with a dielectric layer interposed therebetween, and having fifth and sixth surfaces opposing each other, third and fourth surfaces opposing each other, and first and second surfaces opposing each other. A first through-electrode penetrates through the body to be connected to the first internal electrode, and a second through-electrode penetrates through the body to be connected to the second internal electrode. First and second external electrodes are disposed on the first and second surfaces, respectively, and third and fourth external electrodes are disposed on the first and second surfaces, respectively, to be spaced apart from the first and second external electrodes. Each of the first to fourth external electrodes is a respective sintered electrode including nickel.
Abstract:
There is provided a multilayer ceramic electronic component including: a ceramic body including dielectric layers; and a plurality of internal electrodes disposed in the ceramic body, having at least one of the dielectric layers interposed therebetween, wherein when a distance between a widthwise end of an internal electrode disposed at a central portion of the ceramic body in a thickness direction thereof and an adjacent side surface of the ceramic body is defined as D1 and a distance between a widthwise end of an internal electrode disposed at an upper or lower portion of the ceramic body in the thickness direction thereof and the adjacent side surface of the ceramic body is defined as D2, D1/D2 is in a range of 0.5 to 0.95 (0.5≦D1/D2≦0.95).
Abstract:
A multilayer ceramic capacitor includes a body including a dielectric layer and first and second internal electrodes disposed with the dielectric layer interposed therebetween; first and second through electrodes penetrating the body, connected to the first and second internal electrodes, respectively, and including nickel; first and second external electrodes, and connected to the first through electrode; and third and fourth external electrodes spaced apart from the first and second external electrodes, and connected to the second through electrode. Each of the first to fourth external electrodes includes a sintered electrode including nickel, and a first plating layer and a second plating layer stacked on the sintered electrode in order.
Abstract:
A multilayer ceramic capacitor includes a body including a dielectric layer and first and second internal electrodes disposed with the dielectric layer interposed therebetween and disposed in point-symmetry with each other; first and second connection electrodes penetrating the body in a direction perpendicular to the dielectric layer and connected to the first internal electrode; third and fourth connection electrodes penetrating the body in a direction perpendicular to the dielectric layer and connected to the second internal electrode; first and second external electrodes disposed on both surfaces of the body and connected to the first and second connection electrodes; and third and fourth external electrodes spaced apart from the first and second external electrodes and connected to the third and fourth connection electrodes, and the first and second internal electrodes include a region in which an electrode is not disposed.
Abstract:
A multilayer ceramic electronic component and a method of manufacturing the same are provided. The multilayer ceramic electronic component includes a ceramic body including dielectric layers, and internal electrodes alternately disposed on the dielectric layers and containing a ceramic additive disposed therein; and external electrodes formed on an outer portion of the ceramic body and electrically connected to the internal electrodes. The ceramic additive is disposed in the internal electrode at a position spaced apart from a boundary between the internal electrode and the dielectric layer by a predetermined distance.
Abstract:
A multilayer ceramic capacitor may include: an active part including a plurality of first and second internal electrodes; upper and lower cover layers; and first and second external electrodes including head parts and band parts. When a thickness of the upper or lower cover layer is defined as C, a width of a margin portion of the ceramic body in a width direction is defined as M, a cross-sectional area of the ceramic body in a width-thickness direction is defined as Ac, a cross-sectional area of the active part in a width-thickness direction in a portion thereof in which the first and second internal electrodes are overlapped with each other in a thickness direction is defined as Aa, and a width of the band part of the first or second external electrode is defined as B, 1.826≦C/M≦4.686, 0.2142≦Aa/Ac≦0.4911, and 0.5050≦C/B≦0.9094 may be satisfied.
Abstract translation:多层陶瓷电容器可以包括:有源部分,包括多个第一和第二内部电极; 上下盖层; 以及包括头部和带部分的第一和第二外部电极。 当上盖层或下盖层的厚度定义为C时,将陶瓷体的宽度方向的边缘部分的宽度定义为M,陶瓷体的宽度方向的横截面积为 定义为Ac,其中第一和第二内部电极在厚度方向上彼此重叠的部分中的宽度厚度方向上的有源部分的横截面面积被定义为Aa,并且宽度 第一或第二外部电极的带部分被定义为B,1.826& NlE; C / M& NlE; 4.686,0.2142& NlE; Aa / Ac&NlE; 0.4911和0.5050& N; E / C&B&NlE; 0.9094。
Abstract:
There is provided a multilayer ceramic electronic component including a ceramic body including a plurality dielectric layers stacked thereon, a plurality of internal electrodes formed to be exposed to both end surface of the ceramic body, having the dielectric layer interposed therebetween, and external electrodes formed on the end surfaces of the ceramic body and electrically connected to the internal electrodes, respectively, wherein connectivity of the internal electrode is equal to or greater than 87%.
Abstract:
A multilayer ceramic capacitor includes a ceramic body having first and second main surfaces opposing one another, first and second lateral surfaces opposing one another, and first and second end surfaces opposing one another. First and second internal electrodes have an overlap region with lead out portions exposed to the first lateral surface of the ceramic body. An insulating layer is formed to cover the overlap region of the lead out portions exposed to the first lateral surface of the ceramic body; and first and second external electrodes are formed on the first lateral surface of the ceramic body on which the insulating layer is formed and electrically connected to the first and second internal electrodes. Thicknesses of the insulating layer from the first lateral surface and the first and second external electrodes from the first lateral surface are specified.