Abstract:
A coil component includes: a body including a magnetic material and a coil of which both ends are externally exposed; intermetallic compounds disposed on the exposed both ends of the coil; and external electrodes disposed on the body to cover the intermetallic compounds. The external electrodes include: conductive resin layers disposed on outer surfaces of the body to contact the exposed both ends of the coil and including base resins, a plurality of metal particles disposed in the base resins, and conductive connecting parts surrounding the plurality of metal particles and contacting the intermetallic compounds. The coil component further includes electrode layers disposed on the conductive resin layers and contacting the conductive connecting parts.
Abstract:
There is provided a multilayer ceramic capacitor including: a ceramic body including dielectric layers; and a plurality of internal electrodes disposed within the ceramic body, having the dielectric layer interposed therebetween, wherein, on a cross section of the ceramic body in a width-thickness direction thereof, when a distance between an uppermost internal electrode and a lowermost internal electrode measured at centers thereof in a width direction thereof is defined as a and a distance between the uppermost internal electrode and the lowermost internal electrode measured at edges thereof in the width direction thereof is defined as b, 0.953≦a/b≦0.996 is satisfied.
Abstract translation:提供了一种多层陶瓷电容器,其包括:包括电介质层的陶瓷体; 以及设置在所述陶瓷体内的多个内部电极,其间插入有所述电介质层,其中,在所述陶瓷体的宽度方向的截面上,当所述陶瓷体的最内侧的内部电极和最下层的内部电极之间的距离 定义为在其宽度方向的中心处测量的最大内部电极和最内部电极之间的距离,其边缘处的宽度方向上测量的距离定义为b,满足0.953≦̸ a / b≦̸ 0.996 。
Abstract:
A multilayer capacitor and a method of manufacturing includes a conductive resin layer of an external electrode disposed on a first electrode layer. The conductive resin layer includes a conductive connecting part and an intermetallic compound contacting the first electrode layer and the conductive connecting part. The conductive connecting part contacts a plurality of metal particles and a second electrode layer, such that the 7equivalent series resistance (ESR) of the multilayer capacitor is decreased and warpage strength of the multilayer capacitor is improved.
Abstract:
There is provided a multilayer ceramic electronic component including a ceramic body including a plurality dielectric layers stacked thereon, a plurality of internal electrodes formed to be exposed to both end surface of the ceramic body, having the dielectric layer interposed therebetween, and external electrodes formed on the end surfaces of the ceramic body and electrically connected to the internal electrodes, respectively, wherein connectivity of the internal electrode is equal to or greater than 87%.
Abstract:
There is provided a multilayer ceramic electronic component, including: a ceramic body including dielectric layer; and first and second internal electrodes formed inside the ceramic body and disposed to face each other with the dielectric layer interposed therebetween, wherein, on a cross section of the ceramic body taken in length-thickness (L-T) directions thereof, a secondary phase material is formed at interfaces between the first and second internal electrodes and the dielectric layers, and a ratio of an area occupied by the secondary phase material to an overall area of the ceramic body is 0.1% to 0.5%.
Abstract:
A multilayer capacitor and a method of manufacturing includes a conductive resin layer of an external electrode disposed on a first electrode layer. The conductive resin layer includes a conductive connecting part and an intermetallic compound contacting the first electrode layer and the conductive connecting part. The conductive connecting part contacts a plurality of metal particles and a second electrode layer, such that the 7 equivalent series resistance (ESR) of the multilayer capacitor is decreased and warpage strength of the multilayer capacitor is improved.
Abstract:
A coil component includes: a body including a magnetic material and a coil of which both ends are externally exposed; intermetallic compounds disposed on the exposed both ends of the coil; and external electrodes disposed on the body to cover the intermetallic compounds. The external electrodes include: conductive resin layers disposed on outer surfaces of the body to contact the exposed both ends of the coil and including base resins, a plurality of metal particles disposed in the base resins, and conductive connecting parts surrounding the plurality of metal particles and contacting the intermetallic compounds. The coil component further includes electrode layers disposed on the conductive resin layers and contacting the conductive connecting parts.
Abstract:
A multilayer capacitor and a method of manufacturing includes a conductive resin layer of an external electrode disposed on a first electrode layer. The conductive resin layer includes a conductive connecting part and an intermetallic compound contacting the first electrode layer and the conductive connecting part. The conductive connecting part contacts a plurality of metal particles and a second electrode layer, such that the 7 equivalent series resistance (ESR) of the multilayer capacitor is decreased and warpage strength of the multilayer capacitor is improved.
Abstract:
There is provided a multilayer ceramic electronic component including: a ceramic body including dielectric layers; and a plurality of internal electrodes disposed in the ceramic body, having at least one of the dielectric layers interposed therebetween, wherein when a distance between a widthwise end of an internal electrode disposed at a central portion of the ceramic body in a thickness direction thereof and an adjacent side surface of the ceramic body is defined as D1 and a distance between a widthwise end of an internal electrode disposed at an upper or lower portion of the ceramic body in the thickness direction thereof and the adjacent side surface of the ceramic body is defined as D2, D1/D2 is in a range of 0.5 to 0.95 (0.5≦D1/D2≦0.95).
Abstract:
There is provided a multilayer ceramic electronic component, including a ceramic body, and an internal electrode formed in the ceramic body and having a plurality of non-electrode regions formed therein, wherein in a cross section formed in length and thickness directions of the ceramic body, when a thickness of the internal electrode is Te, an area of the internal electrode is Ae, and an area of the plurality of non-electrode regions is Ao, 0.1 μm≦Te≦0.55 μm and 3.2%≦Ao:Ae≦4.5% are satisfied.