Abstract:
Provided are a depth camera and methods of measuring a depth image by using the depth camera. The depth camera is a time-of-flight (TOF) depth camera including: an illumination device that illuminates a patterned light to an object; a filter unit that reduces noise light included in light reflected by the object; and an image sensor that provides a depth image of the object by receiving light that enters through the filter unit. The illumination device includes: a light source; and a patterned light generator that changes the light emitted from the light source into the patterned light. The filter unit includes a band pass filter and an optical modulator. The patterned light generator may be a diffractive optical element or a refractive optical element.
Abstract:
An optical device includes a gallium arsenide (GaAs) substrate, and a multiple quantum well structure formed on the GaAs substrate and having a quantum well layer and a quantum barrier layer. In the optical device, the quantum well layer is formed of a first semiconductor material that has a bandgap energy which is lower than that of the GaAs substrate and receives a compressive strain from the GaAs substrate, and the quantum barrier layer is formed of a second semiconductor material that has a bandgap energy which is higher than that of the GaAs substrate and receives a tensile strain from the GaAs substrate.
Abstract:
Provided are a wavelength separation device and a 3-dimensional (3D) image acquisition apparatus including the same. The wavelength separation device includes a first prism having an inclined surface and a second prism bonded to a first region of the inclined surface of the first prism. A wavelength separation coating may be disposed at a junction between the first portion of the inclined surface of the first prism and the second prism, and a second portion of the inclined surface of the first prism, different from the first portion, is a total reflection surface that totally internally reflects light.
Abstract:
An imaging optical system includes an objective lens configured to focus light having a first wavelength band and light having a second wavelength band, an optical shutter module configured to reflect the light having the first wavelength band, which is focused by the objective lens, without modulating the light having the first wavelength band and to modulate the light having the second wavelength band, which is focused by the objective lens, and reflect the modulated light having the second wavelength band, and an image sensor configured to respectively sense the light having the first wavelength band and the modulated light having the second wavelength band, which are reflected by the optical shutter module, and to output a first image signal with respect to the light having the first wavelength band and a second image signal with respect to the modulated light having the second wavelength band.
Abstract:
Provided are a depth camera and methods of measuring a depth image by using the depth camera. The depth camera is a time-of-flight (TOF) depth camera including: an illumination device that illuminates a patterned light to an object; a filter unit that reduces noise light included in light reflected by the object; and an image sensor that provides a depth image of the object by receiving light that enters through the filter unit. The illumination device includes: a light source; and a patterned light generator that changes the light emitted from the light source into the patterned light. The filter unit includes a band pass filter and an optical modulator. The patterned light generator may be a diffractive optical element or a refractive optical element.
Abstract:
A large-area transmissive type optical image modulator, a method of manufacturing the same, and an optical apparatus including the transmissive type optical image modulator are provided. The large-area transmissive type optical image modulator includes: a base substrate; a first expitaxial layer formed on the base substrate; a second expitaxial layer formed on the first expitaxial layer; a first electrode formed on the first expitaxial layer and spaced apart from the second expitaxial layer; a second electrode formed on the second expitaxial layer; and a transparent substrate covering the second expitaxial layer and the second electrode, wherein the base substrate includes a through hole corresponding to a light emitting area, and the first expitaxial layer may include an n-type or p-type doping material.
Abstract:
An imaging optical system includes an objective lens configured to focus light having a first wavelength band and light having a second wavelength band, an optical shutter module configured to reflect the light having the first wavelength band, which is focused by the objective lens, without modulating the light having the first wavelength band and to modulate the light having the second wavelength band, which is focused by the objective lens, and reflect the modulated light having the second wavelength band, and an image sensor configured to respectively sense the light having the first wavelength band and the modulated light having the second wavelength band, which are reflected by the optical shutter module, and to output a first image signal with respect to the light having the first wavelength band and a second image signal with respect to the modulated light having the second wavelength band.
Abstract:
A transmissive image modulator for allowing image modulation over a wide bandwidth with multiple Fabry-Perot resonant modes and multiple absorption modes is provided. The transmissive image modulator includes a lower reflection layer; an active layer disposed on the lower reflection layer, including multiple quantum well layers and multiple barrier layers; an upper reflection layer disposed on the active layer; and at least one micro-cavity layer disposed in at least one of the lower and upper reflection layer. The active layer and the at least one micro-cavity layer have thicknesses of a multiple of λ/2, where λ is a resonant wavelength.
Abstract:
A 3-dimensional (3D) image acquisition apparatus capable of simultaneously obtaining a color image and a depth image in a single shooting operation is provided. The apparatus includes a light source for radiating illumination light having a predetermined wavelength onto an object; a lens unit having at least four object lenses; an image sensor including at least four sensing regions for individually receiving light focused by the object lenses and for generating images; and at least three optical shutters individually facing at least three of the at least four object lenses and for modulating incident light with predetermined gain waveforms.
Abstract:
Provided is a 3-dimensional (3D) image acquisition apparatus and a method of driving the same. The 3D image acquisition apparatus includes a light source, an optical shutter, an image sensor, an image signal processor, and a controller. The light source is configured to project illumination light on an object. The optical shutter is configured to modulate the illumination light reflected from the object with a predetermined gain waveform. The image sensor is configured to generate a depth image by detecting the illumination light modulated by the optical shutter. The image signal processor is configured to calculate a distance from the 3D image acquisition apparatus to the object using the depth image generated by the image sensor. The controller is configured to control an operation of the light source and an operation of the optical shutter.