摘要:
Face recognition of a face, to determine whether the face correlates with an enrolled face, may include generating a personalized three-dimensional (3D) face model based on a two-dimensional (2D) input image of the face, acquiring 3D shape information and a normalized 2D input image of the face based on the personalized 3D face model, generating feature information based on the 3D shape information and pixel color values of the normalized 2D input image, and comparing the feature information with feature information associated with the enrolled face. The feature information may include first and second feature information generated based on applying first and second deep neural network models to the pixel color values of the normalized 2D input image and the 3D shape information, respectively. The personalized 3D face model may be generated based on transforming a generic 3D face model based on landmarks detected in the 2D input image.
摘要:
Provided is a 3D registration method and apparatus that may select a key point from among plural points included in 3D target data, based on a geometric feature or a color feature of each of the plural points, may adjust a position of the selected key point of the 3D target data based on features of, or a distance between, a key point of the 3D source data and the selected key point of the 3D target data, may calculate reliabilities of plural key points of the 3D source data based on respective features of at least one key point of the 3D target data determined to correspond to the plural key points of the 3D source data, and may generate 3D registration data by performing 3D registration between the 3D source data and the 3D target data based on the calculated reliabilities.
摘要:
A medical image registration method includes determining whether a reference point of registration is present in a first medical image and a second medical image of an object; in response to determining that the reference point is not present in one of the first medical image and the second medical image, estimating a virtual reference point corresponding to the reference point in one of the first medical image and the second medical image, in which the reference point is not present, by using anatomical information of the object; and registering the first medical image and the second medical image by using the estimated virtual reference point.
摘要:
A method and an apparatus for registering a face, and a method and an apparatus for recognizing a face are disclosed, in which a face registering apparatus may change a stored three-dimensional (3D) facial model to an individualized 3D facial model based on facial landmarks extracted from two-dimensional (2D) face images, match the individualized 3D facial model to a current 2D face image of the 2D face images, and extract an image feature of the current 2D face image from regions in the current 2D face image to which 3D feature points of the individualized 3D facial model are projected, and a face recognizing apparatus may perform facial recognition based on image features of the 2D face images extracted by the face registering apparatus.
摘要:
Face recognition of a face, to determine whether the face correlates with an enrolled face, may include generating a personalized three-dimensional (3D) face model based on a two-dimensional (2D) input image of the face, acquiring 3D shape information and a normalized 2D input image of the face based on the personalized 3D face model, generating feature information based on the 3D shape information and pixel color values of the normalized 2D input image, and comparing the feature information with feature information associated with the enrolled face. The feature information may include first and second feature information generated based on applying first and second deep neural network models to the pixel color values of the normalized 2D input image and the 3D shape information, respectively. The personalized 3D face model may be generated based on transforming a generic 3D face model based on landmarks detected in the 2D input image.
摘要:
A method and an apparatus for recognizing an object are disclosed. The apparatus may extract a plurality of features from an input image using a single recognition model and recognize an object in the input image based on the extracted features. The single recognition model may include at least one compression layer configured to compress input information and at least one decompression layer configured to decompress the compressed information to determine the features.
摘要:
A method for registering medical images includes calculating, when a probe is disposed on a reference point of a target, a transformation relation for registering a first medical image and a second medical image having a different modality from the first medical image by using the reference point, wherein the first medical image is obtained by using the probe; and obtaining a sectional image of the second medical image corresponding to a sectional image of the first medical image from the second medical image by using the transformation relation.
摘要:
A medical image registration method and apparatus are described. By performance of a medical image registration method, a highly accurate registered image, in which breathing deformation information is considered, may be obtained by generation of non-real-time medical images in which the breathing deformation information is reflected before a medical procedure is conducted and by rigid registration of a real-time medical image and the generated non-real-time medical images during the medical procedure.
摘要:
A method and an apparatus for recognizing an object are disclosed. The apparatus may extract a plurality of features from an input image using a single recognition model and recognize an object in the input image based on the extracted features. The single recognition model may include at least one compression layer configured to compress input information and at least one decompression layer configured to decompress the compressed information to determine the features.
摘要:
A liveness test method and apparatus is disclosed. A processor implemented liveness test method includes extracting an interest region of an object from a portion of the object in an input image, performing a liveness test on the object using a neural network model-based liveness test model, the liveness test model using image information of the interest region as provided first input image information to the liveness test model and determining liveness based at least on extracted texture information from the information of the interest region by the liveness test model, and indicating a result of the liveness test.