Abstract:
A white light emitting device includes: a blue light emitting diode (LED) which emits blue light; and a resin packing unit which encapsulates the blue LED, wherein the resin packing unit includes a first wavelength conversion material which, in response to being excited by the blue light, emits green light, a second wavelength conversion material which, in response to being excited by the blue light, emits red light, and a complex compound which absorbs light of a region in which the green light and the red light are mixed, the light of the region being included in white light implemented through a mixture of the green light and the red light excited together with the blue light.
Abstract:
A white light emitting device includes: a blue light emitting diode (LED) which emits blue light; and a resin packing unit which encapsulates the blue LED, wherein the resin packing unit includes a first wavelength conversion material which, in response to being excited by the blue light, emits green light, a second wavelength conversion material which, in response to being excited by the blue light, emits red light, and a complex compound which absorbs light of a region in which the green light and the red light are mixed, the light of the region being included in white light implemented through a mixture of the green light and the red light excited together with the blue light.
Abstract:
The present invention relates to a GaN type LED device and a method of manufacturing the same. More particularly, there are provided a GaN type LED device including an LED chip; and a submount eutectic-bonded with the LED chip through an adhesive layer, wherein the adhesive layer is configured by soldering a plurality of metallic layers in which a first metallic layer and a second metallic layer are sequentially stacked, and the second metallic layer is formed in a paste form. Further, the present invention provides a method of manufacturing the GaN type LED device.