Abstract:
The invention relates to a system for the continuous polymerization of α-olefin monomers comprising a reactor, a compressor, a cooling unit and an external pipe, wherein the reactor comprises a first outlet for a top recycle stream, wherein the system comprises apparatus, wherein the reactor comprises a first inlet for receiving a bottom recycle stream, wherein the reactor comprises an integral separator, wherein the first inlet of the integral separator is connected to a first outlet, wherein the first outlet for the liquid phase is connected to the second outlet of the reactor for the liquid phase, wherein the external pipe comprises a second inlet for receiving a solid polymerization catalyst, wherein the first outlet of the external pipe is connected to a second inlet of the reactor, wherein the reactor comprises a third outlet, wherein the system comprises a first inlet for receiving a feed.
Abstract:
The invention relates to linear low density polyethylene having a density in the range from about 900 kg/m3 to less than about 940 kg/m3 as determined using IS01872-2, having a molecular weight distribution (Mw/Mn) in the range from 2.5 to 3.5, having an area under the peak in the temperature range from 20 to 40° C. determined using an analytical temperature rising elution fractionation analysis using 1,2-dichlorobenzene and a heating rate of 1° C./min, wherein the area is in the range from 5 to 20% of the sum of the areas under all peaks determined with the analytical temperature rising elution fractionation analysis.
Abstract:
The invention relates to a process for the continuous polymerization of one or more a-olefin monomers of which at least one is ethylene or propylene comprising the steps of: (1) feeding the one or more a-olefins to a vertically extended reactor suitable for the continuous fluidized bed polymerization of one or more a-olefin monomers of which at least one is ethylene or propylene, which reactor is operable in condensed mode, wherein the reactor comprises a distribution plate and an integral gas/liquid separator located below the distribution plate, (2) withdrawing the polyolefin from the reactor (3) withdrawing fluids from the top of the reactor, (4) cooling the fluids to below their dew point, resulting in a bottom recycle stream, (5) introducing the bottom recycle stream under the distribution plate, (6) separating at least part of the liquid from the bottom recycle stream using the integral separator to form a liquid phase and a gas/liquid phase, (7) feeding the liquid phase to an external pipe, (8) adding a solid polymerization catalyst to the liquid phase in the external pipe resulting in the formation of a slurry stream comprising prepolymer and/or polymer and (9) feeding the slurry stream comprising the prepolymer and/or polymer into the reactor above the distribution plate, wherein the prepolymer and/or polymer are present in the slurry stream in an amount of from 0.01 to 99 wt % based on the total slurry stream upon introduction of the slurry stream into the reactor.
Abstract:
The present invention relates to a catalyst composition for the polymerisation of olefins comprising a support containing a single site catalyst component, a catalyst activator and a modifier wherein the modifier is the product of reacting an aluminum compound of general formula AI(R1, R2, R3) with an amine compound of general formula N(R4, R5, R6). The catalyst composition reduces fouling and/or sheeting when used to catalyse the polymerisation of olefins. The present invention also relates to a method for the polymerisation of olefins using the catalyst composition of the invention.
Abstract:
The present invention relates to a catalyst composition for the polymerisation of olefins comprising a support containing a single site catalyst component, a catalyst activator and a modifier wherein the modifier is the product of reacting an aluminum compound of general formula AI(R1, R2, R3) with an amine compound of general formula N(R4, R5, R6). The catalyst composition reduces fouling and/or sheeting when used to catalyse the polymerisation of olefins. The present invention also relates to a method for the polymerisation of olefins using the catalyst composition of the invention.
Abstract:
The invention is directed to a process for the gas phase polymerisation of one or more olefin monomers in a fluidised bed reactor in a dry mode or in a (super) condensed mode with a gas stream comprising an inert gas characterised in that the inert gas comprises a mixture of inert components: (1) nitrogen; (2) a gas heat capacity increasing agent (3) a sorption promoting agent and (4) a polymer swelling agent. The inert gas may comprise (1) 5-60% by mol nitrogen (2) 10-90% by mol ethane (3) 1-50% by mol % n-butane and (4) 0.1-10% by mol % n-pentane or iso-pentane.
Abstract:
The invention relates to a multi-zone reactor for the continuous fluidized bed polymerization of one or more α-olefin monomers of which at least one is ethylene or propylene, which multi-zone reactor is operable in condensed mode, which multi-zone reactor comprises a first zone, a second zone, a third zone, a fourth zone and a distribution plate, wherein the second zone contains an inner wall, wherein the third zone contains an inner wall, wherein at least part of the inner wall of the third zone is either in the form of a gradually increasing inner diameter or a continuously opening cone, wherein the diameter or the opening increases in the vertical direction towards the top of the multi-zone reactor, wherein the largest diameter of the inner wall of the third zone is larger than the largest diameter of the inner wall of the second zone.
Abstract:
The invention relates to a system for the continuous polymerization of α-olefin monomers comprising a reactor, a compressor, a cooling unit and an external pipe, wherein the reactor comprises a first outlet for a top recycle stream, wherein the system comprises apparatus, wherein the reactor comprises a first inlet for receiving a bottom recycle stream, wherein the reactor comprises an integral separator, wherein the first inlet of the integral separator is connected to a first outlet, wherein the first outlet for the liquid phase is connected to the second outlet of the reactor for the liquid phase, wherein the external pipe comprises a second inlet for receiving a solid polymerization catalyst, wherein the first outlet of the external pipe is connected to a second inlet of the reactor, wherein the reactor comprises a third outlet, wherein the system comprises a first inlet for receiving a feed.
Abstract:
The invention relates to a multi-zone reactor for the continuous fluidized bed polymerization of one or more α-olefin monomers of which at least one is ethylene or propylene, which multi-zone reactor is operable in condensed mode, which multi-zone reactor comprises a first zone, a second zone, a third zone, a fourth zone and a distribution plate, wherein the second zone contains an inner wall, wherein the third zone contains an inner wall, wherein at least part of the inner wall of the third zone is either in the form of a gradually increasing inner diameter or a continuously opening cone, wherein the diameter or the opening increases in the vertical direction towards the top of the multi-zone reactor, wherein the largest diameter of the inner wall of the third zone is larger than the largest diameter of the inner wall of the second zone.
Abstract:
The invention relates to a process for the continuous polymerization α-olefin monomers comprising: feeding the α-olefins to a vertically extended reactor for the continuous fluidized bed polymerization of α-olefin monomers, wherein the reactor comprises a distribution plate and an integral gas/liquid separator, withdrawing the polyolefin from the reactor, withdrawing fluids from the reactor, cooling the fluids to below their dew point, resulting in a bottom recycle stream, (5) introducing the bottom recycle stream, separating at least part of the liquid from the bottom recycle stream, feeding a liquid phase to an external pipe, adding a solid polymerization catalyst to the liquid phase in the external pipe and (9) feeding a slurry stream comprising the prepolymer and/or polymer into the reactor, wherein the prepolymer and/or polymer are present in the slurry stream in an amount of 0.01 to 99 wt % based on the total slurry stream upon introduction into the reactor.