Abstract:
Treatment fluids and methods for treating a subterranean formation are disclosed that include introducing a treatment fluid into a subterranean formation, the treatment fluid containing temporarily inactive cellulose nanoparticles.
Abstract:
A method for forming proppant aggregates, for example downhole in an injection well, includes injecting a slurry including a thermo-responsive polymer with a low critical solution temperature and a proppant downhole, and heating the slurry above the low critical solution temperature of the polymer. The heating of the slurry above the low critical solution temperature of the polymer aggregates the proppant. A composition of the slurry includes a carrier fluid including a thermo-responsive polymer, a proppant, and optional additives.
Abstract:
The application discloses a storable composition for oilfield application including a slurry of a carrier fluid and a particulate blend made of proppant; the particulate blend comprising at least a first amount of particulates having a first average particle size between about 100 and 5000 μm and at least a second amount of particulates having a second average particle size between about three and twenty times smaller than the first average particle size; such that a packed volume fraction of the particulate blend exceeds 0.74 and the particulate blend volume is sufficient to substantially avoid settling of the particulate in the carrier fluid.
Abstract:
A method to improve fluid flow in a hydraulic fracture from a subterranean formation which includes the steps of (1) formulating a slurry which comprises (a) proppant particles, (b) a carrier fluid, and (c) low density particles, wherein the fluid is capable of undergoing a transformation to cause an agglomeration of two or more proppant particles and/or low density particles; and (2) injecting the slurry into the formation; and (3) the agglomeration of the proppant particles and/or low density particles, is provided.
Abstract:
A composition, treatment fluid and method using hydrolyzable fines. A treatment fluid, which may optionally include a high solids content fluid (HSCF) and/or an Apollonianistic solids mixture, includes a fluid loss control agent comprising a dispersion of hydrolyzable fines, optionally with one or more of a surfactant, plasticizer, dispersant, degradable particles, reactive particles and/or submicron particles selected from silicates, γ-alumina, MgO, γ-Fe2O3, TiO2, and combinations thereof.
Abstract:
A composition and method are disclosed. The composition includes a carrier fluid and a solids mixture combined to form a slurry, wherein the solids mixture comprises a plurality of volume-averaged particle size distribution (PSD) modes, wherein a first PSD mode comprises solids having a volume-average median size at least three times larger than the volume-average median size of a second PSD mode such that a packed volume fraction of the solids mixture exceeds 0.75, and wherein the solids mixture comprises a degradable material and includes a reactive solid. The method includes circulating the slurry through a wellbore to form a pack in a fracture and/or a screen-wellbore annulus; degrading the degradable material to increase porosity and permeability of the pack; and producing a reservoir fluid through the permeable pack.
Abstract:
A method of fracturing a subterranean formation comprising at least in part shale formation, comprises providing a carrier fluid; providing a particulate blend including a first amount of particulates having a first average particle size between about 100 and 2000 microns and a second amount of particulates having a second average particle size between about three and twenty times smaller than the first average particle size, such that a packed volume fraction of the particulate blend exceeds 0.75; combining the carrier fluid and the particulate blend into a fracturing slurry; fracturing the formation with the fracturing slurry to create at least a fracture; and removing the second amount of particulates from the fracture.
Abstract:
Treatment fluids and methods for treating a subterranean formation include introducing a treatment fluid into a subterranean formation, the treatment fluid containing a nanocrystalline cellulose. The treatment fluid may be a fracturing fluid, well control fluid, well kill fluid, well cementing fluid, acid fracturing fluid, acid diverting fluid, a stimulation fluid, a sand control fluid, a completion fluid, a wellbore consolidation fluid, a remediation treatment fluid, a spacer fluid, a drilling fluid, a frac-packing fluid, water conformance fluid or a gravel packing fluid.