Abstract:
A system that converts environmental vibrational energy into electrical energy includes a transducer that undergoes oscillating movement in response to the vibrational energy in order to produce an oscillating electrical signal. Power electronics process the oscillating electrical signal. A control system (including at least one control element of the power electronics, at least one sensor and control electronics) carries out a control scheme that dynamically varies the dampening of the oscillating movement of the transducer over time. The control scheme is based upon a predetermined parametric relation involving a plurality of variables derived from the properties measured by the at least one sensor. In several embodiments, the plurality of variables includes a first variable representing excitation frequency of the transducer. In another embodiment, the predetermined parametric relation represents relative phase between two variables derived from the properties measured by the at least one sensor.
Abstract:
A technique employs the use of oscillations downhole to facilitate a desired functionality of a downhole tool. According to this technique, a tool is initially conveyed downhole and operated to perform a function that relates to a downhole application. The operational efficiency of the tool is improved by creating oscillating forces which vibrate the tool to achieve a desired result, e.g. freeing the tool from a stuck position.
Abstract:
Techniques for axial vibration control of wireline tools and cables during logging operations. In undesirable cases the axial vibrations may lead to or exasperate the stick-slip problems of the logging tool. Control systems and strategies to minimize vibrations and techniques for identifying and inhibiting the sticking of the cable. A system includes a surface actuator and a sensor. The actuator generates an axial wave on the wireline cable which travels down the cable. If there is sticking of the cable, a reflection can also occur at the location of sticking. This shift in the transmission of the wave on the wireline cable is used to identify the onset and/or presence of sticking.
Abstract:
Techniques are described for axial vibration control of wireline tools and cables during logging operations. In undesirable cases the axial vibrations may lead to or exasperate the stick-slip problems of the logging tool. Control systems and strategies to minimize vibrations are described. Techniques are also described for identifying and inhibiting the sticking of the cable. A described system includes a surface actuator and a sensor. The actuator generates an axial wave on the wireline cable which travels down the cable. If there is sticking of the cable, a reflection can also occur at the location of sticking. This shift in the transmission of the wave on the wireline cable is used to identify the onset and/or presence of sticking.
Abstract:
Apparatus and method comprising a plurality of particles which are magnetically attracted to one another in response to exposure to a magnetic field, and which maintain attraction to one another after removal of the magnetic field, the attraction being disabled when the particles are demagnetized, whereby the particles operate to alter the rheological properties of a fluid in which the particles are mixed when the attraction is enabled or disabled is disclosed.
Abstract:
Active stabilization is provided. In one possible implementation a drilling tool associated with a drill bit includes one or more rotation alteration devices configured to alter a rotational radius of a drill string. The drilling tool also includes at least one active stabilizer rotatively attached to the drilling tool, as well as a variable brake configured to control a rotation of the at least one active stabilizer relative to the drilling tool. In another possible implementation, a drilling tool includes an active stabilizer rotatably coupled to the drilling tool, as well as an actuation system configured to control a torque placed on the active stabilizer through contact with a wall of a borehole.
Abstract:
A downhole kinetic energy storage system for wellbore completions is configured for installation downhole for extended periods of time, such as 10 year or more. The kinetic energy storage system receives power from a low power source, which can be due to a “power bottleneck” to the downhole location such as inductive coupling, optical fiber, downhole energy harvesting, and/or subsea wellhead configurations. The system stores the available low-power as rotational energy in a flywheel and then when demanded converts the rotational energy into electrical energy at a temporary power level exceeding the low power source. The temporary high power energy is used for wellbore completion applications such as actuating a flow control or other downhole valve.
Abstract:
A technique employs the use of oscillations downhole to facilitate a desired functionality of a downhole tool. According to this technique, a tool is initially conveyed downhole and operated to perform a function that relates to a downhole application. The operational efficiency of the tool is improved by creating oscillating forces which vibrate the tool to achieve a desired result, e.g. freeing the tool from a stuck position.
Abstract:
A downhole kinetic energy storage system for wellbore completions is configured for installation downhole for extended periods of time, such as 10 year or more. The kinetic energy storage system receives power from a low power source, which can be due to a “power bottleneck” to the downhole location such as inductive coupling, optical fiber, downhole energy harvesting, and/or subsea wellhead configurations. The system stores the available low-power as rotational energy in a flywheel and then when demanded converts the rotational energy into electrical energy at a temporary power level exceeding the low power source. The temporary high power energy is used for wellbore completion applications such as actuating a flow control or other downhole valve.
Abstract:
A technique employs the use of oscillations downhole to facilitate a desired functionality of a downhole tool. According to this technique, a tool is initially conveyed downhole and operated to perform a function that relates to a downhole application. The operational efficiency of the tool is improved by creating oscillating forces which vibrate the tool to achieve a desired result, e.g. freeing the tool from a stuck position.