Abstract:
A photoelectric conversion device includes: a first optical filter that has a first pattern periodically having a plurality of structures and is formed of a conductive material film disposed on a first photoelectric conversion element with an insulating film therebetween; and a first optical filter that has a second pattern periodically having a plurality of structures and is formed of a conductive material film disposed on a second photoelectric conversion element with the insulating film therebetween. The interval between the first pattern and the second pattern that are adjacent to each other is longer than a period of the structures in the first pattern and a period of the structures in the second pattern.
Abstract:
A circuit-integrated photoelectric converter in which a dished portion is less likely to be formed in an insulating layer underlying a plasmonic filter portion and the plasmonic filter portion can be accurately and finely processed is provided and a method for manufacturing the same is provided. A metal layer (31) is disposed on an insulating layer (7) above a wiring layer (11, 12, 13). This metal layer (31) includes a plasmonic filter portion (32) and a shield metal portion (33) that blocks light. The plasmonic filter portion (32) having cyclic holes (32a) to guide light having a selected wavelength to a first photoelectric converting element (101).
Abstract:
A spectral device includes a polarizing filter and an optical filter. The polarizing filter transmits part of light incident on the polarizing filter, the part of light having a particular polarization component. Light that is incident on and passes through the polarizing filter is converted into linearly polarized light. Light that has passed through the polarizing filter is incident on the optical filter. The optical filter transmits light within a particular frequency range. The optical filter includes a metal layer and a dielectric layer. The dielectric layer is disposed on the metal layer. Multiple slits are formed in the metal layer. The multiple slits are arranged at equal intervals in a predetermined direction. The multiple slits extend in a direction perpendicular to a direction in which the light that has passed through the polarizing filter is polarized.
Abstract:
Provided are an optical receiver that can realize a reduction in the variation of sensitivity in the ultraviolet light region and a reduction in noise in the visible light region and the infrared light region, a portable electronic device, and a method of producing an optical receiver. The first light-receiving device (PD1) and the second light-receiving device (PD2) of the optical receiver (1) are each constituted by forming a second conductivity-type N-type well layer (N_well) on a first conductivity-type P-type substrate (P_sub), forming a first conductivity-type P-type well layer (P_well) in the N-type well layer (N_well), and forming a second conductivity-type N-type diffusion layer (N) in the P-type well layer (P_well). The P-type substrate P_sub, the N-type well layer (N_well), and the P-type well layer (P_well) are electrically at the same potential or are short-circuited.
Abstract:
A photoelectric conversion device capable of preventing anomalous transmission of light of a wavelength that is not supposed to be transmitted and reducing the half-width of a spectral waveform and a method for manufacturing such a photoelectric conversion device are provided. A first photoelectric conversion element is formed on a substrate. A first metal film having a plurality of openings arranged periodically or aperiodically is formed above the first photoelectric conversion element with insulating films interposed therebetween. A second metal film covering a part of the openings in the first metal film is provided.
Abstract:
An optical filter configured to transmit light of a predetermined wavelength includes a substrate; a first conductive thin film that is disposed on the substrate and has apertures extending through the first conductive thin film and arranged with a period of less than the predetermined wavelength; and a second conductive thin film at least a portion of which faces the apertures so as to be separated from the apertures.