Abstract:
The present invention provides a touch control structure, comprising a touch control zone, and the touch control zone comprises touch control units and first lead wires corresponding to the touch control units, and the touch control units are arranged in array having a plurality of column of the touch control units, and the touch control units of each column are aligned in spaces from top to bottom in the touch control structure, and the first lead wires sequentially penetrate the touch control units in each column from top to bottom in the touch control structure, and the first lead wire is electrically coupled to one touch control unit, and is disconnected with the next touch control unit, which is adjacent to the touch control unit in the same column and close to the top of the touch control structure.
Abstract:
In the technical field of display, a display device for solving the technical problem of H-block caused by the resistance of the wire on array is provided. The display device comprises a substrate, a gate driver circuit, and at least two chip on films for transmitting the gate driving signal. The display device further comprises at least two wirings, each chip on film being connected to the gate driver circuit through one of the wirings. The wirings each comprise a wire on array, and all or some of the wirings each further comprise a resistor in series connection with the wire on array thereof. The present disclosure can be applied to display devices, such as liquid crystal television, liquid crystal display, cell phone, and tablet PC, and the like.
Abstract:
The present invention discloses an array substrate, which includes a sub-pixel array, a number of data lines, and a number of scanning lines. The sub-pixel array is divided into a number of column groups along the distribution direction of the data lines, and is divided into a number of row groups along the distribution direction of the scanning lines. By designing the layout of the sub-pixels, the data lines and the scanning lines in the array substrate, there are alternately distributed sufficiently charged sub-pixels and insufficiently charged sub-pixels exist in a same column of sub-pixels when a dot inversion driving is used. Therefore, a LCD panel including the array substrate has even brightness uniformity, and the defect of vertical bright-dark lines is alleviated. The present invention also discloses a LCD panel including the above array substrate and a corresponding LCD.
Abstract:
The present invention discloses an array substrate, which includes a sub-pixel array, a number of data lines, and a number of scanning lines. The sub-pixel array is divided into a number of column groups along the distribution direction of the data lines, and is divided into a number of row groups along the distribution direction of the scanning lines. By designing the layout of the sub-pixels, the data lines and the scanning lines in the array substrate, there are alternately distributed sufficiently charged sub-pixels and insufficiently charged sub-pixels exist in a same column of sub-pixels when a dot inversion driving is used. Therefore, a LCD panel including the array substrate has even brightness uniformity, and the defect of vertical bright-dark lines is alleviated. The present invention also discloses a LCD panel including the above array substrate and a corresponding LCD.
Abstract:
A liquid crystal display panel is disclosed. Said liquid crystal display panel comprises a plurality of sub pixels that are configured in a pixel array, said pixel array being formed by a plurality of data lines and a plurality of scanning lines that are configured orthogonally to each other, and said plurality of scanning lines comprising: a first scanning line, which is turned on during a first time period after a polarity of a voltage of a driving signal of a data line is reversed, wherein the first sub pixel is charged through said data line; and at least one second scanning line, which are turned on during a second time period, wherein the second sub pixel is charged through said data line. A value of an equivalent capacitor of the first sub pixel is larger than that of the second sub pixel, so that the sustaining voltage of the first sub pixel is equal to that of the second sub pixel.
Abstract:
The present invention provides a thin film transistor array substrate and a liquid crystal display panel. The thin film transistor array substrate comprises: a substrate; a light shielding layer, located at a middle part on a surface of the substrate; a buffer layer, covering the light shielding layer; a Low Temperature Poly-silicon layer, being located on the buffer layer, and corresponding to the light shielding layer; an isolation layer, covering the Low Temperature Poly-silicon layer, and the isolation layer comprises a through hole, wherein a width of the through hole is smaller than a width of the light shielding layer; a metal layer, located on the isolation layer, and the metal layer is connected with the Low Temperature Poly-silicon layer via the through hole. The thin film transistor array substrate and the liquid crystal display panel have a higher aperture ratio.
Abstract:
The invention provides a scanning driving circuit and a liquid crystal display apparatus. The scanning driving circuit including a latch module to receive and calculate an upper level control signal, a first and a second clock signal and a reset signal to get a first control signal, and latch and output the first control signal; a logic control module receive and calculate the first and the second control signal and the third clock signal to get a logic control signal, and output the logic control signal; an output module receive and calculate the logic control signal and the second control signal to get and output a scanning driving signal, and a scan line connected to the output module to transmit the scanning driving signal to a pixel unit and to achieve the special function of the liquid crystal display apparatus.
Abstract:
The invention provides an array substrate including an array of sub-pixels, multiple data lines and multiple scan lines. The array of sub-pixels is divided into multiple column groups along the arrangement direction of the data lines and divided into multiple row groups along the arrangement direction of the scan lines. By the arrangement design of a connection manner of the sub-pixels with the data lines and scan lines in the array substrate, when is driven by a dot inversion method, each column of sub-pixels have intervally arranged well-charged sub-pixels and poorly-charged sub-pixels, so that in a liquid crystal panel including the array substrate, brightnesses of various areas are balanced on the whole and the drawback of the existence of bright and dark lines in the vertical direction is improved. A liquid crystal panel including the array substrate, and a corresponding liquid crystal display device also are provided.
Abstract:
A thin-film transistor (TFT) array substrate is provided. The TFT array substrate is structured to change the way that sub-pixels are arranged so that during a displaying period of a frame of image, the sub-pixels that have inconsistent brightness/darkness become alternate with each other spatially so that a displaying defect of vertical bright/dark lines can be improved and the overall resistance of the data line can be reduced to thereby reduce resistance-capacitance delay and prevent incorrect charging at a tail end of a scan line or a data line.
Abstract:
The present invention proposes a manufacturing method of a liquid crystal display panel. The method includes: injecting liquid crystal molecules having monomers into a liquid crystal box; detecting an alternating-current deflection voltage between a transparent electrode of an array substrate and a transparent electrode of a color filter substrate in connection areas of the liquid crystal display panel; applying the alternating-current deflection voltage between the transparent electrode of the array substrate and the transparent electrode of the color filter substrate when values of the alternating-current deflection voltage are all equal to a setting value; irradiating the liquid crystal display panel to form the polymer alignment films.