Abstract:
A method for machining a tool includes applying compressive residual stress to the tool by laser peening using a pulsed laser. The tool includes a base material and a coating layer that covers at least a portion of a surface of the base material. In the applying, the compressive residual stress is applied to the tool such that a difference in compressive residual stress at an interface between the base material and the coating layer is at most 100 MPa.
Abstract:
A method for processing corrosion resistant austenitic stainless steel includes: preparing a workpiece made of austenitic stainless steel; and applying compressive residual stress to a surface layer of the workpiece without subjecting the surface layer to plastic working.
Abstract:
A deterioration evaluation method includes a determination step of determining a shot peening condition for imparting a maximum residual stress to an object formed of a metal material; a first shot peening step of performing first shot peening on the object under the shot peening condition; a first measurement step of measuring a first residual stress of the object after the first shot peening step; a second shot peening step of performing second shot peening on the object after the first measurement step under the shot peening condition; a second measurement step of measuring a second residual stress of the object after the second shot peening step; and an evaluation step of evaluating deterioration of the object based on the first residual stress and the second residual stress.
Abstract:
A processing method according to one aspect incudes preparing a metal workpiece having a hole that opens to a surface thereof, filling the hole with processing media, and applying an external force to the processing media to apply a compressive residual stress to an inner surface of the hole.
Abstract:
A shot peening method includes performing first shot peening for applying residual stress to a surface of an object formed of a metal material at a first depth, and performing second shot peening for applying residual stress to the surface of the object at a second depth deeper than the first depth after the first shot peening.
Abstract:
A shot processing system according to an aspect includes a shot processing apparatus to project shot media, a measurement device output a signal waveform related to a wave generated due to collision of the shot media, a control device to control the shot processing apparatus. The control device includes a processing condition acquisition unit to acquire a required intensity, a control unit to control the shot processing apparatus to cause the shot processing apparatus to perform the shot processing to the measurement device under a first shot condition, an intensity analysis unit to acquire a measured intensity by analyzing the signal waveform output by the shot processing to the measurement device, and a correction unit to correct a shot condition of the shot processing apparatus from the first shot condition to a second shot condition to reduce a difference between the required intensity and the measured intensity.
Abstract:
A surface treatment processing method includes: a shot processing step of performing shot processing of shooting shot media at a treatment target; a first inspection step of nondestructively inspecting at least one of a surface side state and an external dimension of the treatment target subjected to the shot processing, evaluating that the treatment target is passed when an inspection result is within a first normal range set in advance, evaluating that the treatment target is failed when the inspection result is out of a first allowable range set in advance to include the first normal range, and evaluating that the treatment target is to be additionally processed when the inspection result is out of the first normal range but within the first allowable range; and an additional processing step of performing the shot processing again on the treatment target which is evaluated to be additionally processed.
Abstract:
A first inspection step nondestructively inspects a surface side state of a treatment target to be subjected to shot processing of shooting shot media at the treatment target and evaluates that the treatment target is failed when an inspection result deviates from a first allowable range predetermined. A condition setting step sets a shot processing condition in response to the inspection result of the first inspection step for the treatment target evaluated as not failed in the first inspection step. A shot processing step performs shot processing of shooting shot media at the treatment target evaluated as not failed in the first inspection step in the shot processing condition set in the condition setting step. A second inspection step after the shot processing step nondestructively inspects a surface side state of the treatment target.
Abstract:
An apparatus includes an X-ray generating source; a first detecting element adapted to detect intensity of diffracted X-rays of the measuring object at a first detecting position; a second detecting element adapted to detect intensity of the diffracted X-rays of the measuring object at a second detecting position; a moving mechanism adapted to move each of the first detecting element and the second detecting element along a straight line extending in a direction orthogonal to a direction of incidence of the X-rays; a movement control unit adapted to control respective detecting positions of the first detecting element and the second detecting element by driving the moving mechanism; and a stress calculation unit adapted to calculate residual stress of the measuring object based on intensity peaks of the diffracted X-rays detected, respectively, by the first detecting element and the second detecting element each moved by the moving mechanism.
Abstract:
In a trial peening step, a shot peening process is applied to a back face 40B of a mold 40 in which an opening of a closed-end water cooling hole 42 is formed. Next, in an evaluation step, compressive residual stress and surface roughness of a region shot-peened in the trial peening step are measured and an extent of shot peening treatment in the trial peening step is evaluated based on measurement results. Next, in a peening step, a surface of the water cooling hole 42 in the mold 40 is shot-peened under peening conditions set based on peening conditions for the trial peening step and on evaluation results produced in the evaluation step.