Abstract:
An impedance calibration circuit includes a first calibration voltage driver configured to operate in response to a first enable signal, compare a first calibration voltage signal with a first reference voltage signal, and drive the first calibration voltage signal, a first control code generator configured to operate in response to a second enable signal, compare the first calibration voltage signal with a first target voltage signal, and generate a first control code signal, and a first reference voltage generator configured to generate the first reference voltage signal in response to the first control code signal.
Abstract:
An impedance calibration circuit includes a first reference resistor electrically coupled to a calibration pad, a second reference resistor which is coupled to the first reference resistor in parallel and a resistance value of the second reference resistor is varied according to an operation voltage mode, and a calibration circuit electrically coupled to the calibration pad and configured to generate a calibration code according to a resistance value formed by the first reference resistor and the second reference resistor and calibrate an impedance value in the calibration pad according to the calibration code.
Abstract:
An impedance calibration circuit may be provided. The impedance calibration circuit may include an adjusting circuit. The adjusting circuit may be configured to generate a calibration code based on a variation voltage, which may be applied to a calibration node coupled to a calibration pad, and a reference voltage. The adjusting circuit may be configured to apply a voltage, which may be generated according to a control signal generated based on an operational voltage mode in accordance with the calibration code, to the calibration node. The adjusting circuit may include a plurality of leg circuits. At least one of the leg circuits may include a plurality of legs configured to be selectively coupled to the calibration node based on the control signal.
Abstract:
A signal transmission circuit includes a first selection driver configured to generate a first drive signal in response to an input signal and a first selection signal and drive a transmission signal in response to the first drive signal, and a second selection driver configured to delay the input signal by a first delay time to generate a first delay signal. The second selection driver generates a second drive signal in response to the first delay signal and a second selection signal, generates a first code signal in response to the input signal and the second selection signal, and drives the transmission signal in response to the second drive signal and the first code signal.