Abstract:
The application relates to a device for producing three-dimensional workpieces, the device including: a structural surface designed to receive a molding compound; and an irradiation arrangement designed to selectively irradiate the molding compound on the structural surface with electromagnetic radiation, in order to produce a workpiece by means of generative layer construction, where the irradiation device comprises a plurality of irradiation units, the irradiation units being designed to irradiate an individual region of the structural surface respectively associated with the irradiation units, and where the beams emitted by the irradiation units respectively have a cross-sectional surface corresponding to between approx. 2% and approx. 170% of the surface of the respectively associated individual region. The application also relates to the use of such a device and to a method for producing three-dimensional workpieces by means of such a device.
Abstract:
In a method for producing a three-dimensional workpiece (12), a first raw material powder (50) is applied to a substrate (18) in order to produce a raw material powder layer consisting of the first raw material powder (50). The raw material powder layer consisting of the first raw material powder (50) is selectively irradiated with electromagnetic radiation or particle radiation in order to produce a solidified first workpiece layer portion (52) from the first raw material powder (50). Non-solidified first raw material powder (50) is then removed from the substrate (18). In the next step, a second raw material powder (54) is applied to the substrate (18), in order to produce a raw material powder layer portion consisting of the second raw material powder (54) adjacent to the first workpiece layer portion (52), The raw material powder layer portion is selectively irradiated with electromagnetic radiation or particle radiation in order to produce a solidified second workpiece layer portion (56) from the second raw material powder (54) adjacent to the first workpiece layer portion (52). The non-solidified second raw material powder (54) is heated in order to produce a continuous porous sintered layer portion (58) from the second raw material powder (54) adjacent to the first workpiece layer portion (52) and the second workpiece layer portion (56).
Abstract:
The invention relates to a device (1) for producing three-dimensional workpieces (15), comprising a carrier (7) for receiving raw material powder (9), a build chamber wall (11, 11a, 11b) which extend substantially vertically and which is adapted to laterally delimit and support the raw material powder (9) applied to the carrier (7); an irradiation unit (17) for selectively irradiating the raw material powder (9) applied to the carrier (7) with electromagnetic radiation or particle radiation in order to produce on the carrier (7) a workpiece (15) manufactured from the raw material powder (9) by an additive layer building method, wherein the irradiation unit (17) comprises at least one optical element; and a vertical movement device (31) which is adapted to move the irradiation unit (17) vertically relative to the carrier (7). The build chamber wall (11, 11a, 11b) and the carrier (7) are adapted to be connected to one another in a stationary manner during the vertical movement of the irradiation unit (17) so that the vertical movement takes place relative to the carrier (7) and relative to the build chamber wall (11, 11a, 11b).
Abstract:
The invention relates to a device (1) for producing three-dimensional workpieces (15), comprising a carrier (7) for receiving raw material powder (9), a build chamber wall (11, 11a, 11b) which extend substantially vertically and which is adapted to laterally delimit and support the raw material powder (9) applied to the carrier (7); an irradiation unit (17) for selectively irradiating the raw material powder (9) applied to the carrier (7) with electromagnetic radiation or particle radiation in order to produce on the carrier (7) a workpiece (15) manufactured from the raw material powder (9) by an additive layer building method, wherein the irradiation unit (17) comprises at least one optical element; and a vertical movement device (31) which is adapted to move the irradiation unit (17) vertically relative to the carrier (7). The build chamber wall (11, 11a, 11b) and the carrier (7) are adapted to be connected to one another in a stationary manner during the vertical movement of the irradiation unit (17) so that the vertical movement takes place relative to the carrier (7) and relative to the build chamber wall (11, 11a, 11b).
Abstract:
An unpacking device for use in an apparatus for producing a three-dimensional work piece by irradiating layers of a raw material powder with electromagnetic or particle radiation, the unpacking device comprises a holding device which is configured to hold a building chamber arrangement. The building chamber arrangement comprises a building chamber accommodating a carrier, wherein the carrier is configured to receive a three-dimensional work piece produced from a raw material powder by an additive layering process. An engagement unit of the unpacking device is configured to engage with the carrier of the building chamber arrangement. A moving mechanism is configured to cause a relative movement between the building chamber and the engagement unit with the carrier engaged therewith so as to allow a separation of the carrier with a three-dimensional work piece received thereon from the building chamber. Finally, the unpacking device comprises a raw material powder removal mechanism which is configured to cause at least one of a vibration and a rotation of the engagement unit with the carrier engaged therewith so as to remove residual raw material powder from the three-dimensional work piece received on the carrier.
Abstract:
A carrier arrangement (30) comprises a carrier element (34) having a carrier surface (36) and a plurality of supporting elements (38) attached to the carrier element (34), wherein each supporting element (38) has a supporting surface (40) extending from the carrier surface (36) of the carrier element (34) and being adapted to interact with a first surface (42) of a component (32) to be repaired. The carrier arrangement (30) further comprises a plurality of clamping elements (44), wherein at least a part of the clamping elements (44) are releasably attachable to the carrier element (34) in such a manner that a clamping surface (46) of the clamping elements (44), which is adapted to interact with a second surface (48) of a component (32) to be repaired, faces the supporting surface (40) of an associated supporting element (38) so as to sandwich the component (32) to be repaired therebetween in such a manner that the component (32) is fixed to the carrier element (34) with a repair site (50) of the component (32) facing away from the carrier surface (36) of the carrier element (34). A fastening device (72) of the carrier arrangement (30) is adapted to interact with a corresponding fastening device (74) of an apparatus (10) for repairing components (32) by selectively irradiating layers of a raw material powder applied to the repair sites (50) of the components (32) with electromagnetic or particle radiation.
Abstract:
An apparatus for producing a three-dimensional work piece comprises a carrier to receive a layer of raw material powder, a control unit, an irradiation system adapted to selectively irradiate electromagnetic or particle radiation onto the layer of raw material powder applied onto the carrier, wherein the control unit controls the operation of the irradiation system in such a manner that the raw material powder is heated to a first temperature which allows sintering and/or melting of the raw material powder in order to generate a layer of the three-dimensional work piece, and a heating system adapted to selectively irradiate electromagnetic or particle radiation onto the layer of raw material powder applied onto the carrier, wherein the control unit is adapted to control the operation of the heating system in such a manner that the raw material powder is heated to a second temperature that is lower than the first temperature.
Abstract:
A method for producing a three-dimensional work piece comprises the steps of applying a raw material powder onto a carrier (16), and selectively irradiating electromagnetic or particle radiation onto the raw material powder applied onto the carrier (16) by means of an irradiation unit (18) in order to produce the work piece from said raw material powder on the carrier (16) by a generative layer construction method, wherein the irradiation unit (18) comprises a radiation source (24) and a plurality of optical elements (30, 32, 34, 35). Operation of the irradiation unit (18) is controlled in dependence on an operating temperature dependent change of at least one optical property of at least one optical element (30, 32, 34, 35) of the irradiation unit (18).
Abstract:
The invention relates to a device (1) for producing three-dimensional workpieces (15), comprising a carrier (7) for receiving raw material powder (9), a build chamber wall (11, 11a, 11b) which extend substantially vertically and which is adapted to laterally delimit and support the raw material powder (9) applied to the carrier (7); an irradiation unit (17) for selectively irradiating the raw material powder (9) applied to the carrier (7) with electromagnetic radiation or particle radiation in order to produce on the carrier (7) a workpiece (15) manufactured from the raw material powder (9) by an additive layer building method, wherein the irradiation unit (17) comprises at least one optical element; and a vertical movement device (31) which is adapted to move the irradiation unit (17) vertically relative to the carrier (7). The build chamber wall (11, 11a, 11b) and the carrier (7) are adapted to be connected to one another in a stationary manner during the vertical movement of the irradiation unit (17) so that the vertical movement takes place relative to the carrier (7) and relative to the build chamber wall (11, 11a, 11b).
Abstract:
The invention relates to an apparatus (10) for producing a three-dimensional workpiece, comprising: a carrier (12) adapted to receive material (14) for producing the workpiece; at least one mobile production unit (24), a moving unit (18) that is adapted to move the mobile production unit (24) relative to the carrier (12) so as to position the mobile production unit (24) oppositely to different sections of the carrier (12); a sensing unit that is adapted to generate sensor signals relating to a relative arrangement of the mobile production unit (24) and the carrier (12); and a control unit that is configured to, in addition to the positioning of the mobile production unit (24) via the moving unit (18), provide at least one fine positioning function to compensate for an offset from a desired relative arrangement of the mobile production unit (24) and the carrier (18) based on the sensor signals generated by the sensing unit. The invention further relates to a method for producing a three-dimensional workpiece.