Abstract:
A fiber preform of π-shaped section, the preform including a base with a first face and an opposite second face, legs extending from the second face, and a fiber structure woven as a single piece by three-dimensional weaving with a plurality of layers of warp or weft yarns linked interlinked by weft or warp yarns in a plurality of layers of weft or warp yarns. In each plane of the preform, the weft or warp yarns of a first group of weft or warp yarns extend continuously through the base between two opposite edges thereof, and weft or warp yarns of a second group of weft or warp yarns extend continuously from an end of one of the legs to an end of the other leg, passing via the base, with the yarns of the first group and the yarns of the second group presenting two mutual crossings.
Abstract:
A fiber preform of π-shaped section, the preform including a base with a first face and an opposite second face, legs extending from the second face, and a fiber structure woven as a single piece by three-dimensional weaving with a plurality of layers of warp or weft yarns linked interlinked by weft or warp yarns in a plurality of layers of weft or warp yarns. In each plane of the preform, the weft or warp yarns of a first group of weft or warp yarns extend continuously through the base between two opposite edges thereof, and weft or warp yarns of a second group of weft or warp yarns extend continuously from an end of one of the legs to an end of the other leg, passing via the base, with the yarns of the first group and the yarns of the second group presenting two mutual crossings.
Abstract:
In a fiber structure woven as a single piece by three-dimensional weaving, first weft yarns interlink layers of warp yarns in a first portion of the fiber structure adjacent to a non-interlinked zone and also warp yarns of a second portion of the fiber structure beyond the non-interlinked zone, and second weft yarns interlink layers of warp yarns of the second portion of the fiber structure adjacent to the non-interlinked zone and also layers of warp yarns of the first portion of the fiber structure beyond the non-interlinked zone, such that the paths of the first and second weft yarns cross in at least one transition zone extending within the fiber structure from the end of the non-interlinked zone, the transition zone extending in the weft direction over a distance greater than the pitch between adjacent warp columns.
Abstract:
A fiber structure includes a blank portion formed as a single part by three-dimensional weaving between a first plurality of yarn layers and a second plurality of yarn layers, the blank portion corresponding to all or part of a fiber reinforcement preform for a part made of composite material. Outside the blank portion, the fiber structure includes one or more two-dimensional fabric layers, each two-dimensional fabric layer grouping together the yarns of a single layer belonging to at least the first plurality of yarn layers and situated outside the blank portion.
Abstract:
A fiber structure for reinforcing a composite material part, the structure being woven as a single piece by multilayer weaving between a first plurality of layers of yarns extending in a first direction and a second plurality of layers of yarns extending in a second direction. The second plurality of layers of yarns includes at least one layer of variable-weight yarns, each variable-weight yarn including a separable assembly of individual yarns, each having a determined weight. The fiber structure includes at least one portion of reduced thickness in which the variable-weight yarn presents a weight that is less than the weight that it presents prior to the reduced thickness portion.
Abstract:
A fiber structure reinforcing a composite material part woven as a single piece by multilayer weaving between plural first and second layers of yarns. The fiber structure includes a portion of decreasing thickness that presents: plural yarn withdrawal parts in surface continuity, with yarns interrupted from the first plural layers of yarns underlying the layer of yarns of the first plural layers of yarns situated in the surface of the structure; and plural yarn withdrawal parts in surface discontinuity, with yarns interrupted from the first plural layers of yams situated at the surface of the structure, each interrupted yarn replaced in the surface of the structure by a yarn of a layer of yarns underlying the first plural layers of yarns. The yarns of the second plural layers of yarns situated in the surface of the fiber structure are continuous over at least the entire portion of decreasing thickness.
Abstract:
A method of making a fiber preform, and the preform, for fabricating a turbine engine blade out of composite material, the method including: making a single-piece fiber blank by three-dimensional weaving with layers of longitudinal yarns interlinked by yarns of layers of transverse yarns; and shaping the fiber blank to obtain a single-piece fiber preform including a portion forming an airfoil preform and at least one portion forming a platform preform. During weaving, yarns of a first group of longitudinal yarns are extracted from the fiber blank beside one of side faces of the blank to form a portion corresponding to a blade platform preform, and yarns of a second group of longitudinal yarns are inserted into the fiber blank with mutual crossing of the yarns of the first group and the yarns of the second group.
Abstract:
A fiber preform is formed by a fiber structure woven by three-dimensional weaving with a plurality of layers of warp yarns interlinked by weft yarns of a plurality of layers of weft yarns, the fiber preform having a first portion and a second portion that extend one another in the weft direction and that are at an angle to each other. In the fold zone and in each weft plane of the fiber structure, two weft yarns situated in a region adjacent to an outside face of the fiber structure situated on the inside of the corner present paths that cross, so that less curvature is imposed on these yarns.
Abstract:
A fiber blank woven as a single piece by three-dimensional weaving to make a closed box-structure platform out of composite material for a turbine engine fan. In each plane of the fiber blank, a set of warp yarns interlinks layers of weft yarns in first, second, and third portions of the fiber blank, while leaving a closed non-interlinked zone separating the first and second portions over a fraction of the dimension of the fiber blank in the warp direction between an upstream non-interlinking limit and a downstream non-interlinking limit, and while leaving at least one open non-interlinked zone separating the second and third portions over a fraction of the dimension of the fiber blank in the warp direction from a non-interlinking limit to a downstream edge of the fiber blank. A method of fabricating a preform for the closed box-structure platform can use such a fiber blank.
Abstract:
A fiber structure reinforcing a composite material part woven as a single piece by multilayer weaving between plural first and second layers of yarns. The fiber structure includes a portion of decreasing thickness that presents: plural yarn withdrawal parts in surface continuity, with yarns interrupted from the first plural layers of yarns underlying the layer of yarns of the first plural layers of yarns situated in the surface of the structure; and plural yarn withdrawal parts in surface discontinuity, with yarns interrupted from the first plural layers of yarns situated at the surface of the structure, each interrupted yarn replaced in the surface of the structure by a yarn of a layer of yarns underlying the first plural layers of yarns. The yarns of the second plural layers of yarns situated in the surface of the fiber structure are continuous over at least the entire portion of decreasing thickness.