Abstract:
A secondary battery is provided. The secondary battery includes a cathode; an anode; and a gel electrolyte, wherein the gel electrolyte includes an electrolytic solution and a polymer, and the electrolytic solution includes an unsaturated cyclic ester carbonate represented by Formula (2): where R5 and R6 are one of a hydrogen group, a halogen group, a monovalent hydrocarbon group, a monovalent halogenated hydrocarbon group, a monovalent oxygen-containing hydrocarbon group, and a monovalent halogenated oxygen-containing hydrocarbon group; and where R5 and R6 may be bonded to each other.
Abstract:
An electrolytic solution for a secondary battery is provided. The electrolyte solution includes an electrolyte salt; and a solvent including a first solvent and a second solvent; wherein the first solvent includes 4-fluoro-1,3-dioxolane-2-one; and wherein the second solvent includes at least one of Chemical Formula No. 23, Chemical Formula No. 24, or Chemical Formula No. 25.
Abstract:
A secondary battery includes: a cathode, an anode, and a nonaqueous electrolytic solution in a package member having a flat surface, in which the nonaqueous electrolytic solution includes a methylene cyclic carbonate represented by an expression (1): where R1 and R2 each are a hydrogen group, a halogen group, a monovalent hydrocarbon group, a monovalent halogenated hydrocarbon group, an oxygen-containing monovalent hydrocarbon group, or an oxygen-containing monovalent halogenated hydrocarbon group, and R1 and R2 may be bonded to each other.
Abstract:
Battery anode active material with fluorine resin coating. A terminal of the fluorine resin is a hydroxyl group or the like capable of being fixed (for example, being absorbed or bound) on the surface of the anode active material layer (anode active material).
Abstract:
A secondary battery includes: a cathode; an anode; and an electrolytic solution. The anode includes a carbon material and styrene-butadiene rubber. The electrolytic solution includes an unsaturated cyclic ester carbonate represented by the following Formula (1). (X is a divalent group in which m-number of >C═CR1R2 and n-number of >CR3R4 are bonded in any order. Each of R1 to R4 is one of a hydrogen group, a halogen group, a monovalent hydrocarbon group, a monovalent halogenated hydrocarbon group, a monovalent oxygen-containing hydrocarbon group, and a monovalent halogenated oxygen-containing hydrocarbon group. Any two or more of the R1 to the R4 are allowed to be bonded to one another. m and n satisfy m≧1 and n≧0.)
Abstract:
A secondary battery is provided. The secondary battery includes a cathode; an anode; and an electrolytic solution, wherein the anode comprises an anode active material layer, wherein the anode active material layer comprises a carbon material, wherein the anode active material layer has a thickness from about 40 micrometers to about 100 micrometers, and wherein the electrolytic solution comprises an unsaturated cyclic ester carbonate represented by Formula (2): where R5 and R6 are selected from the group consisting of a hydrogen group, an alkyl group, an alkyne group, and an aryl group.
Abstract:
A battery including an anode with an anode active material layer that includes anode active material particles made of an anode active material including at least one of silicon and tin as an element. An oxide-containing film including an oxide of at least one kind selected from the group consisting of silicon, germanium and tin is formed in a region of the surface of each anode active material particle in contact with an electrolytic solution by a liquid-phase method such as a liquid-phase deposition method. The region in contact with the electrolytic solution of the surface of each anode active material particle is covered with the oxide-containing film. The thickness of the oxide-containing film is preferably within a range from 0.1 nm to 500 nm both inclusive.
Abstract:
A secondary battery includes: a cathode; an anode; and an electrolytic solution including a cyano compound, the cyano compound including a compound represented by R1-O—C(═O)—O—R2 (R1, R2, or both include a cyano-group-containing group), a compound represented by R3-C(═O)—O—R4 (R4 includes the cyano-group-containing group), or both.
Abstract:
A secondary battery includes: a cathode; an anode; and an electrolytic solution. The anode includes an anode active material layer on an anode current collector. The anode active material layer includes a carbon material. The anode active material layer has a thickness from about 30 micrometers to about 100 micrometers both inclusive. The electrolytic solution includes an unsaturated cyclic ester carbonate represented by the following Formula (1). (X is a divalent group in which m-number of >C═CR1R2 and n-number of >CR3R4 are bonded in any order. Each of R1 to R4 is one of a hydrogen group, a halogen group, a monovalent hydrocarbon group, a monovalent halogenated hydrocarbon group, a monovalent oxygen-containing hydrocarbon group, and a monovalent halogenated oxygen-containing hydrocarbon group. Any two or more of the R1 to the R4 are allowed to be bonded to one another. m and n satisfy m≧1 and n≧0.)
Abstract:
A secondary battery includes: a cathode; an anode; and an electrolytic solution. The anode includes a carbon material and styrene-butadiene rubber. The electrolytic solution includes an unsaturated cyclic ester carbonate represented by the following Formula (1). (X is a divalent group in which m-number of >C═CR1R2 and n-number of >CR3R4 are bonded in any order. Each of R1 to R4 is one of a hydrogen group, a halogen group, a monovalent hydrocarbon group, a monovalent halogenated hydrocarbon group, a monovalent oxygen-containing hydrocarbon group, and a monovalent halogenated oxygen-containing hydrocarbon group. Any two or more of the R1 to the R4 are allowed to be bonded to one another. m and n satisfy m≥1 and n≥0.)