Abstract:
[Object] To enable greater compactness and also to be capable of preventing breakdown more reliably. [Solution] Provided is an actuator, including: a motor; and a reduction gear having a breakdown torque that is less than a starting torque of the motor. A limit value in accordance with the breakdown torque of the reduction gear is set with respect to a control value for driving the motor.
Abstract:
[Object] To enable further improvement in user convenience. [Solution] Provided is a robot arm apparatus including: an arm unit made up of a plurality of links joined to each other by one or a plurality of a joint unit, the arm unit being connectable to an imaging unit; and a drive control unit that controls driving of the arm unit by causing each joint unit to be driven cooperatively. The drive control unit uses relative position information of a reference position with respect to the arm unit, the relative position information being based on a state of the arm unit and distance information about a distance between the imaging unit and the reference position, to control the driving of the arm unit in a manner that the reference position is positioned on an optical axis of the imaging unit.
Abstract:
[Object] To detect a rotational angle accurately and also to drive more safely. [Solution] Provided is an actuator (300) including: a reduction gear (320) that reduces, by a certain reduction ratio, a rotational velocity of an input shaft joined to a rotary shaft of a motor (360), and transmits the reduced rotational velocity to an output shaft (350); a first absolute angle encoder (330) that detects a rotational angle of the input shaft; and a second absolute angle encoder (340) that detects a rotational angle of the output shaft.
Abstract:
A control apparatus includes a control unit (29) that controls an orientation of a mobile body (2) equipped with a plurality of leg portions (20) each including at least one joint, each of the leg portions having; a wheel body (2311) that is provided at a leading end of the leg portion and grounds the leg portion; and a pad portion (2312) that is provided on at least one side face of the wheel body and has a higher frictional resistance with respect to a ground surface than that of the wheel body, wherein the control unit controls a braking force that acts on the mobile body from the ground surface by controlling orientations of the leg portions in a pitch axis direction of the mobile body.
Abstract:
A robot (1) includes: a main body (10) including a hollow portion (110) that is a hollow space penetrating the main body (10) in an up-down direction, the main body (10) being configured to lift and support a support object (30) inserted in the hollow portion (110) by moving in the up-down direction; and a movable member (200) configured to move the main body (10) at least in the up-down direction by operating a leg (20).
Abstract:
There is provided is a robot arm apparatus including an arm unit made up of a plurality of links joined to each other by one or a plurality of a joint unit, the arm unit being connectable to an imaging unit; and a drive control unit that controls driving of the arm unit by causing each joint unit to be driven cooperatively. The drive control unit uses relative position information of a reference position with respect to the arm unit, the relative position information being based on a state of the arm unit and distance information about a distance between the imaging unit and the reference position, to control the driving of the arm unit in a manner that the reference position is positioned on an optical axis of the imaging unit.
Abstract:
[Object] To calibrate an internal model more efficiently and more precisely. [Solution] Provided is a robot arm apparatus including: an arm unit made up of a plurality of links joined by one or a plurality of a joint unit, the arm unit being connectable to an imaging unit. An internal model including at least geometric information about the arm unit and focus position information about the imaging unit is updated using internal model information acquired in a state in which the imaging unit is pointed at a reference point in real space.
Abstract:
A link structure (1) includes: a first link (2); a target member to be moved (housing) (3) that is provided in the interior of the first link (2), and that is movable in the interior of the first link (2); a movement mechanism (4) that is fixed to the first link (2), and that is configured to cause the target member to be moved (3) to move in movement directions (M1, M2) along the first link (2) in response to power of a power part; and an action part (6) that is provided to the target member to be moved (3), and that is configured to act on a movement of a second link (8) mounted onto the first link (2).
Abstract:
Provided is an actuator (300) including: a reduction gear (320) that reduces, by a certain reduction ratio, a rotational velocity of an input shaft joined to a rotary shaft of a motor (360), and transmits the reduced rotational velocity to an output shaft (350); a first absolute angle encoder (330) that detects a rotational angle of the input shaft; and a second absolute angle encoder (340) that detects a rotational angle of the output shaft.
Abstract:
[Object] To realize a movable mechanism capable of being configured more compactly and also capable of ensuring higher safety. [Solution] Provided is a motor. An electrically active part is provided with an insulating structure so that insulating properties between the electrically active part and one or more conductors near the electrically active part satisfy a certain safety standard regarding medical electrical equipment.