Abstract:
The present disclosure is directed to a gas sensor device that detects gases with large molecules (e.g., a gas with a molecular weight between 150 g/mol and 450 g/mol), such as siloxanes. The gas sensor device includes a thin film gas sensor and a bulk film gas sensor. The thin film gas sensor and the bulk film gas sensor each include a semiconductor metal oxide (SMO) film, a heater, and a temperature sensor. The SMO film of the thin film gas sensor is an thin film (e.g., between 90 nanometers and 110 nanometers thick), and the SMO film of the bulk film gas sensor is an thick film (e.g., between 5 micrometers and 20 micrometers thick). The gas sensor device detects gases with large molecules based on a variation between resistances of the SMO thin film and the SMO thick film.
Abstract:
A gas sensor is formed by a thin-film semiconductor metal-oxide gas sensing layer, with a thermally conductive and electrically-insulating layer in direct physical contact with a back of the gas sensing layer to carry the gas sensing layer. Sensing circuitry applies a voltage to the gas sensing layer and measures a current flowing through the gas sensing layer. The current flowing through the gas sensing layer is indicative of whether a gas under detection has been detected by the gas sensing layer, and serves to self-heat the gas sensing layer. A support structure extends from a substrate to make direct physical contact with and carry the thermally conductive and electrically insulating layer about a perimeter of a back face thereof, with the support structure shaped to form an air gap between the back of the thermally conductive and electrically insulating layer and a front of the substrate.
Abstract:
The present disclosure is directed to a gas sensor that includes an active sensor area that is exposed to an environment for detection of elements. The gas sensor may be an air quality sensor that can be fixed in position or carried by a user. The gas sensor includes a heater formed above chamber. The gas sensor includes an active sensor layer above the heater that forms the active sensor area. The gas sensor can include a passive conductive layer, such as a hotplate that further conducts and distributes heat from the heater to the active sensor area. The heater can include a plurality of extensions. The heater can also include a first conductive layer and a second conductive layer on the first conductive layer where the second conductive layer includes a plurality of openings to increase an amount of heat and to more evenly distribute heat from the heater to the active sensor area.
Abstract:
A flexible smart glove detects fine hand and finger motions while permitting the wearer to make hand gestures with dexterity. The flexible smart glove has a thickness of less than about 100 μm and incorporates capacitive micro-sensors positioned at finger joint locations. The micro-sensors are thin film devices built on substrates made of a pliable material such as polyimide. Interdigitated serpentine capacitors monitor strain in the back of the hand, while parallel plate capacitors monitor contact pressure on the palm. Thus the smart glove responds electrically to various types of hand motions. Thin film resistors responsive to changes in body temperature are also formed on the flexible substrate. Motion and temperature data is transmitted from the glove to a microprocessor via a passive RFID tag or an active wireless transmitter. An ASIC is embedded in the smart glove to relay real time sensor data to a remote processor.
Abstract:
The present disclosure is directed to a selective multi-gas sensor device that detects when a high concentration level of a particular gas, such as methane, carbon monoxide, and/or ethanol, is present. The selective multi-gas sensor device detects and identifies a particular gas based on a ratio between a sensitivity of a gas sensitive material at a first temperature and a sensitivity of the gas sensitive material at a second temperature.
Abstract:
The present disclosure is directed to a gas sensor device that detects gases with large molecules (e.g., a gas with a molecular weight between 150 g/mol and 450 g/mol), such as siloxanes. The gas sensor device includes a thin film gas sensor and a bulk film gas sensor. The thin film gas sensor and the bulk film gas sensor each include a semiconductor metal oxide (SMO) film, a heater, and a temperature sensor. The SMO film of the thin film gas sensor is an thin film (e.g., between 90 nanometers and 110 nanometers thick), and the SMO film of the bulk film gas sensor is an thick film (e.g., between 5 micrometers and 20 micrometers thick). The gas sensor device detects gases with large molecules based on a variation between resistances of the SMO thin film and the SMO thick film.
Abstract:
The present disclosure is directed to a gas sensor device that detects gases with large molecules (e.g., a gas with a molecular weight between 150 g/mol and 450 g/mol), such as siloxanes. The gas sensor device includes a thin film gas sensor and a bulk film gas sensor. The thin film gas sensor and the bulk film gas sensor each include a semiconductor metal oxide (SMO) film, a heater, and a temperature sensor. The SMO film of the thin film gas sensor is an thin film (e.g., between 90 nanometers and 110 nanometers thick), and the SMO film of the bulk film gas sensor is an thick film (e.g., between 5 micrometers and 20 micrometers thick). The gas sensor device detects gases with large molecules based on a variation between resistances of the SMO thin film and the SMO thick film.
Abstract:
A gas sensor device may include a gas sensor integrated circuit (IC) having a gas sensing surface, and bond pads adjacent to the gas sensing surface, and a frame having gas passageways extending therethrough adjacent the gas sensing surface. The gas sensor device may include leads, each having a proximal end spaced from the frame and bonded to a respective bond pad, and a distal end extending downwardly from the proximal end, and encapsulation material filling the space between the proximal ends of the leads and the frame.