Abstract:
The present invention relates to a biosensor for inspecting the susceptibility of a microorganism to an antibiotic, a fabrication method therefor, and a method for inspecting the susceptibility of a microorganism to an antibiotic by using same, wherein the biosensor comprises: a substrate including polyethylene terephthalate; and a sensor part formed on one surface or both surfaces of the substrate and comprising an electrode inclusive of a first electrode and a second electrode which interdigitate with each other.
Abstract:
A system and method monitoring the properties of curing concrete systems to assist in adjusting curing conditions to produce predetermined properties in the hardened or cured concrete. The apparatus and method achieves this by providing a low-cost, minimally invasive means for gaining insight into the conditions of the curing concrete by using electrical impedance analysis. Sensors are distributed throughout the system to collect and transmit electrical impedance data, which is then interpreted in reference to correlations with other relevant physical and chemical properties.
Abstract:
Embodiments herein include a kinetic response system for measuring analyte presence on a chemical sensor element. The chemical sensor element includes one or more discrete binding detectors, each discrete binding detector including a graphene varactor. The kinetic response system includes a measurement circuit having an excitation voltage generator for generating a series of excitation cycles over a time period. Each excitation cycle includes delivering a DC bias voltage to the discrete binding detectors at multiple discrete DC bias voltages across a range of DC bias voltages. The kinetic response system includes a capacitance sensor to measure capacitance of the discrete binding detectors resulting from the excitation cycles. The kinetic response system includes a controller circuit to determine the kinetics of change in at least one of a measured capacitance value and a calculated value based on the measured capacitance over the time period. Other embodiments are also included herein.
Abstract:
Use of cell-substrate impedance based methods for screening for agonists of G-Protein Coupled Receptors (GPCRs) or inhibitors of a Receptor Tyrosine Kinases (RTKs), identifying compounds that affect GPCR or RTK pathways, validating molecular targets involved in a GPCR or RTK signaling pathways, monitoring dose-dependent functional activation of GPCR or RTK; determining desensitization of a GPCR and identifying a compound capable of affecting RTK activity in cancer cell proliferation.
Abstract:
A zero-power digital chemical analyzer can include a chemically-selective percolation switch. The chemically selected percolation switch can include a positive electrode and a negative electrode separated from the positive electrode by a gap. A binding agent can be located at binding sites in the gap. The binding agent can be selective for binding to a target chemical compound. The binding sites can be distributed in the gap so that target chemical molecules binding to the binding sites can form an electrically conductive pathway via a natural percolation phenomenon between the electrodes when the ambient concentration of the target chemical compound reaches a threshold concentration.
Abstract:
A method for detection and monitoring a therapeutic effect of a cancer treatment drug is disclosed. The method includes steps of removing a malignant biological cell lines from a tumor; culturing the removed biological cell lines in a controlled set of conditions; seeding the cultured biological cell lines on silicon nanowire electrode arrays of an electrical cell-substrate impedance sensor (ECIS); adding a cancer treatment drug to the seeded biological cell lines to treat the seeded biological cell lines; and measuring an electrical impedance of the treated biological cell lines for detection and monitoring a therapeutic effect of the cancer treatment drug.
Abstract:
A system and method for antibiotic susceptibility testing efficiently determines whether bacteria are alive or have been killed by antibiotic treatment. The antibiotic susceptibility testing device includes at least one reservoir into which a bacteria solution is introduced and a microfluidic channel connected to the reservoir, wherein the cross-sectional size of the microfluidic channel is selected to be comparable to the size of the bacterium to be tested. Furthermore, the electrical resistance or voltage signal across the microchannel is monitored as bacteria swim into and out of the channel. Alternatively, a small population of bacteria can be immobilized in the microchannel. The resistance or voltage signal fluctuates when the bacteria are alive and moving in and out of the channel or wiggling on the microchannel walls. If the bacteria are dead, they have limited motility and the signal fluctuations are significantly smaller. By monitoring the signal fluctuations, the antibiotic susceptibility testing device can determine whether or not bacteria are alive, thus enabling antibiotic susceptibility testing of bacteria.
Abstract:
A method for detection and monitoring a therapeutic effect of a cancer treatment drug is disclosed. The method includes steps of removing a malignant biological cell lines from a tumor; culturing the removed biological cell lines in a controlled set of conditions; seeding the cultured biological cell lines on silicon nanowire electrode arrays of an electrical cell-substrate impedance sensor (ECIS); adding a cancer treatment drug to the seeded biological cell lines to treat the seeded biological cell lines; and measuring an electrical impedance of the treated biological cell lines for detection and monitoring a therapeutic effect of the cancer treatment drug.
Abstract:
Measurement of the impedance and complex resistivity of a sample is used for measuring parameters resulting from a change in physical or chemical state. A variable frequency signal is provided by a transformer primary coil. A secondary coil of the transformer with a closed loop and electrically coupled said sample is monitored along with a leakage current sensor. Sampling at multiple signal frequencies is performed at the multiple signal frequencies.
Abstract:
A system for sensing and measuring ammonia in a breath sample is described. The system includes a sampling means for capturing and directing a breath sample from a subject to an ammonia sensor, the ammonia sensor including a conducting polymer polyaniline sensor. The sampling means includes a breath sample capture chamber, the chamber having an inlet and outlet, the inlet having a first valve through which a breath is exhaled into the sample capture chamber, the outlet having a second valve through which breath surplus to the volume of the chamber is expelled, to provide capture of a breath sample of predefined volume.