Abstract:
A photodiode produces photogenerated charges in response to exposure to light. An integration period collects the photogenerated charges. Collected photogenerated charges in excess of an overflow threshold are passed to an overflow sense node. Remaining collected photogenerated charges are passed to a sense node. A first signal representing the overflow photogenerated charges is read from the overflow sense node. A second signal representing the remaining photogenerated charges is read from the sense node.
Abstract:
A photodiode produces photogenerated charges in response to exposure to light. An integration period collects the photogenerated charges. Collected photogenerated charges in excess of an overflow threshold are passed to an overflow sense node. Remaining collected photogenerated charges are passed to a sense node. A first signal representing the overflow photogenerated charges is read from the overflow sense node. A second signal representing the remaining photogenerated charges is read from the sense node.
Abstract:
An image sensor device may include an array of image sensing pixels arranged in rows and columns. Each image sensing pixel may include an image sensing photodiode, a first source follower transistor coupled to the image sensing photodiode, and a switch coupled to the image sensing photodiode. Each image sensor device may include a second source follower transistor coupled to the switch, and a row selection transistor coupled to the first and second source follower transistors.
Abstract:
An image sensor device may include an array of image sensing pixels arranged in rows and columns. Each image sensing pixel may include an image sensing photodiode, a first source follower transistor coupled to the image sensing photodiode, and a switch coupled to the image sensing photodiode. Each image sensor device may include a second source follower transistor coupled to the switch, and a row selection transistor coupled to the first and second source follower transistors.
Abstract:
An integrated image sensor with backside illumination includes a pixel. The pixel is formed by a photodiode within an active semiconductor region having a first face and a second face. A converging lens, lying in front of the first face of the active region, directs received light rays towards a central zone of the active region. At least one diffracting element, having a refractive index different from a refractive index of the active region, is provided at least partly aligned with the central zone at one of the first and second faces.
Abstract:
An integrated image sensor with backside illumination includes a pixel. The pixel is formed by a photodiode within an active semiconductor region having a first face and a second face. A converging lens, lying in front of the first face of the active region, directs received light rays towards a central zone of the active region. At least one diffracting element, having a refractive index different from a refractive index of the active region, is provided at least partly aligned with the central zone at one of the first and second faces.
Abstract:
An image sensor device may include an array of image sensing pixels arranged in rows and columns. Each image sensing pixel may include an image sensing photodiode, a first source follower transistor coupled to the image sensing photodiode, and a switch coupled to the image sensing photodiode. Each image sensor device may include a second source follower transistor coupled to the switch, and a row selection transistor coupled to the first and second source follower transistors.
Abstract:
An image sensor device may include an array of image sensing pixels arranged in rows and columns. Each image sensing pixel may include an image sensing photodiode, a first source follower transistor coupled to the image sensing photodiode, and a switch coupled to the image sensing photodiode. Each image sensor device may include a second source follower transistor coupled to the switch, and a row selection transistor coupled to the first and second source follower transistors.
Abstract:
An image sensor device may include an array of image sensing pixels arranged in rows and columns. Each image sensing pixel may include an image sensing photodiode, a first source follower transistor coupled to the image sensing photodiode, and a switch coupled to the image sensing photodiode. Each image sensor device may include a second source follower transistor coupled to the switch, and a row selection transistor coupled to the first and second source follower transistors.
Abstract:
An integrated image sensor with backside illumination includes a pixel. The pixel is formed by a photodiode within an active semiconductor region having a first face and a second face. A converging lens, lying in front of the first face of the active region, directs received light rays towards a central zone of the active region. At least one diffracting element, having a refractive index different from a refractive index of the active region, is provided at least partly aligned with the central zone at one of the first and second faces.