Abstract:
Electronic device including a substrate provided with at least one passing opening, a MEMS device with a differential sensor provided with a first and a second surface having at least one portion sensitive to chemical and/or physical variations of fluids present in correspondence with a first and a second opposed active surface thereof. The first surface of the MEMS device leaves the first active surface exposed and the second surface being provided with a further opening which exposes said second opposed active surface, the electronic device being characterized in that the first surface of the MEMS device faces the substrate and is spaced therefrom by a predetermined distance, the sensitive portion being aligned to the passing opening of the substrate, and in that it also comprises a protective package, which incorporates at least partially the MEMS device and the substrate.
Abstract:
A microelectromechanical-acoustic-transducer assembly has: a first die integrating a MEMS sensing structure having a membrane, which has a first surface in fluid communication with a front chamber and a second surface, opposite to the first surface, in fluid communication with a back chamber of the microelectromechanical acoustic transducer, is able to undergo deformation as a function of incident acoustic-pressure waves, and faces a rigid electrode so as to form a variable-capacitance capacitor; a second die, integrating an electronic reading circuit operatively coupled to the MEMS sensing structure and supplying an electrical output signal as a function of the capacitive variation; and a package, housing the first die and the second die and having a base substrate with external electrical contacts. The first and second dice are stacked in the package and directly connected together mechanically and electrically; the package delimits at least one of the front and back chambers.
Abstract:
A microelectromechanical-acoustic-transducer assembly has: a first die integrating a MEMS sensing structure having a membrane, which has a first surface in fluid communication with a front chamber and a second surface, opposite to the first surface, in fluid communication with a back chamber of the microelectromechanical acoustic transducer, is able to undergo deformation as a function of incident acoustic-pressure waves, and faces a rigid electrode so as to form a variable-capacitance capacitor; a second die, integrating an electronic reading circuit operatively coupled to the MEMS sensing structure and supplying an electrical output signal as a function of the capacitive variation; and a package, housing the first die and the second die and having a base substrate with external electrical contacts. The first and second dice are stacked in the package and directly connected together mechanically and electrically; the package delimits at least one of the front and back chambers.