Abstract:
Provided is an acoustic transducer including: a semiconductor substrate; a vibrating membrane provided above the semiconductor substrate, including a vibrating electrode; and a fixed membrane provided above the semiconductor substrate, including a fixed electrode, the acoustic transducer detecting a sound wave according to changes in capacitances between the vibrating electrode and the fixed electrode, converting the sound wave into electrical signals, and outputting the electrical signals. At least one of the vibrating electrode and the fixed electrode is divided into a plurality of divided electrodes, and the plurality of divided electrodes outputting the electrical signals.
Abstract:
A microelectromechanical-acoustic-transducer assembly has: a first die integrating a MEMS sensing structure having a membrane, which has a first surface in fluid communication with a front chamber and a second surface, opposite to the first surface, in fluid communication with a back chamber of the microelectromechanical acoustic transducer, is able to undergo deformation as a function of incident acoustic-pressure waves, and faces a rigid electrode so as to form a variable-capacitance capacitor; a second die, integrating an electronic reading circuit operatively coupled to the MEMS sensing structure and supplying an electrical output signal as a function of the capacitive variation; and a package, housing the first die and the second die and having a base substrate with external electrical contacts. The first and second dice are stacked in the package and directly connected together mechanically and electrically; the package delimits at least one of the front and back chambers.
Abstract:
A microelectromechanical-acoustic-transducer assembly has: a first die integrating a MEMS sensing structure having a membrane, which has a first surface in fluid communication with a front chamber and a second surface, opposite to the first surface, in fluid communication with a back chamber of the microelectromechanical acoustic transducer, is able to undergo deformation as a function of incident acoustic-pressure waves, and faces a rigid electrode so as to form a variable-capacitance capacitor; a second die, integrating an electronic reading circuit operatively coupled to the MEMS sensing structure and supplying an electrical output signal as a function of the capacitive variation; and a package, housing the first die and the second die and having a base substrate with external electrical contacts. The first and second dice are stacked in the package and directly connected together mechanically and electrically; the package delimits at least one of the front and back chambers.
Abstract:
The present disclosure is directed to an acoustic transducer configured to detect a sound wave according to changes in capacitances between a vibrating electrode and a fixed electrode. At least one of the vibrating electrode and the fixed electrode being divided into a plurality of divided electrodes, and the plurality of divided electrodes outputting electrical signals. The disclosure includes a digital interface circuit coupled to the divided electrodes. The circuit includes a recombination stage, which supplies a mixed signal by combining the first digital processed signal and the second digital processed signal with a respective weight that is a function of a first level value of the first processed signal. An output stage is included, which supplies, selectively and alternatively, a first processed signal, a second processed signal, or a mixed signal.
Abstract:
A micromechanical structure for a MEMS capacitive acoustic transducer, has: a substrate made of semiconductor material, having a front surface lying in a horizontal plane; a membrane, coupled to the substrate and designed to undergo deformation in the presence of incident acoustic-pressure waves; a fixed electrode, which is rigid with respect to the acoustic-pressure waves and is coupled to the substrate by means of an anchorage structure, in a suspended position facing the membrane to form a detection capacitor. The anchorage structure has at least one pillar element, which is at least in part distinct from the fixed electrode and supports the fixed electrode in a position parallel to the horizontal plane.