Abstract:
A body made of a ceramic material based on zirconia, the body having a surface region extending from the surface of the body to a predetermined depth and a core region integrally formed with the surface region. The ceramic material in the surface region includes a crystalline phase A formed by zirconia in tetragonal phase. The ceramic material in the surface region further includes a crystalline phase B, the crystal structure of which including apart from zirconium and oxygen at least one further component X in a periodic arrangement, the crystalline phase B having a lower theoretical density than crystalline phase A.
Abstract:
A process for the preparation of a topography for improved blood coagulation and/or cell attachment on a body made of titanium or a titanium alloy. The process includes the subsequent steps of: a) etching at least a portion of the surface of the body with a first etching solution including a mineral acid, and b) etching the surface etched under a) with a second etching solution different than the first etching solution, the second etching solution including hydrofluoric acid.
Abstract:
A process for preparing a body having an osseointegrative topography formed on its surface. The process includes the steps of providing a primary body made of a titanium-zirconium alloy containing 13 to 17 wt-% of zirconium, sandblasting the primary body, and etching the sandblasted primary body with an etching solution including hydrochloric acid, sulfuric acid and water at a temperature of above 80° C. to obtain the body, said etching being performed for a duration of 350 seconds at least.
Abstract:
A process for the preparation of a topography for improved fibrin network formation and cell mineralization on at least a portion of a dental implant made of a binary titanium-zirconium alloy, the portion being destined to be embedded in a patient's jawbone and to be in contact with the jawbone via a bone-contacting surface, the process includes the subsequent steps of a) subjecting the bone-contacting surface of the dental implant to a sandblasting treatment, b) etching the sandblasted bone-contacting surface, and c) treating the sandblasted and etched bone-contacting surface with water or an aqueous solution for a duration of more than two days, during which nanostructures continuously grow on the bone-contacting surface, the nanostructures extending in at least two dimensions to 200 nm at most. The process is characterized in that the treatment of b) is carried out at a temperature from 40° C. to 60° C.
Abstract:
A dental implant made of a ceramic material including an implant surface having at least partially a contact angle of less than 20°, the implant surface being at least partially covered by a protective layer. The protective layer includes a dextran having a molecular weight of more than 15,000 Da.
Abstract:
A Process for providing a defined surface topography to at least a portion of a ceramic body, the process comprising the subsequent steps of a) applying a layer of a calcium containing substance comprising at least one calcium compound onto the surface of at least a portion of the ceramic basic body; b) thermally treating the ceramic basic body with the layer applied thereon at an elevated temperature, whereby a calcium compound or a calcium component based on the calcium compound diffuses into the basic body to form an intermediate body, said intermediate body comprising in its outermost surface region a calcium containing crystalline phase; and c) chemically treating the outermost surface region of the intermediate body with an inorganic acid or base to partially remove the calcium containing crystalline phase, thereby obtaining the surface topography.
Abstract:
A body made of titanium or a titanium alloy having a topography for improved blood coagulation and/or cell attachment. The body is obtainable by a process that includes the subsequent steps of: a) etching at least a portion of the surface of the body with a first etching solution including a mineral acid, and b) etching the surface etched under a) with a second etching solution different than the first etching solution, the second etching solution including hydrofluoric acid.
Abstract:
The present invention relates to an abutment of a dental implant system for connecting a dental implant and a suprastructure, said abutment comprising an abutment basic body extending from an apical end to a coronal end arranged opposite to the apical end. The abutment basic body comprises a dental implant connecting portion facing the apical end and adapted to fit with a corresponding abutment connecting portion of the dental implant and/or an intermediate part to be directly or indirectly connected with the dental implant. It further comprises a support portion facing the coronal end and designed such to allow the suprastructure to be mounted directly or indirectly. According to the invention, the abutment further comprises nanostructures formed on at least a portion of the outer surface of the abutment basic body, said nanostructures extending in at least two dimensions to 200 nm at most.
Abstract:
A dental implant including a dental implant basic body extending along a longitudinal axis from an apical end to an opposite coronal end, which includes an anchoring part facing the apical end and intended to be anchored in bone of a patient, and a head part facing the coronal end and intended to form the basis on which a suprastructure is mounted. The anchoring part includes a shaft that is substantially cylindrical or that tapers toward the apical end in a cone-like manner. At least a portion of the shaft forms a bone tissue contact region, the outer surface forming a bone tissue contact surface. Coronally to the contact region a soft tissue contact region is arranged, the outer surface forming a soft tissue contact surface. The implant further includes nanostructures formed on the soft tissue contact surface which extend in at least two dimensions to 200 nm at most.
Abstract:
A process for providing a sterilized dental article, at least a portion of the surface of which exhibiting a contact angle of less than 45°. The process includes the subsequent steps of a) providing a dental article and b) subjecting the initial dental article to a hydrogen peroxide plasma treatment. It is characterized in that the hydrogen peroxide plasma sterilization treatment of step b) is carried out in the presence of a carbon-containing compound, which during treatment is converted to form a carboxylic group attached to the surface of the dental article.