摘要:
An optical pickup comprising a semiconductor laser, a first waveguide for leading light emitted by the semiconductor laser to recording medium and coupling again light returning from the recording medium; splitting element for separating the light returning from the recording medium from the first waveguide path; and a second waveguide propagating light returning from the recording medium and separated by the splitting element; wherein light going towards the recording medium and light returning from the recording medium propagate separately in the first and the second waveguide so that the utilization efficiency of the light is increased.
摘要:
An optical pickup comprises at least a semiconductor laser, a waveguide optically coupled with the semiconductor laser for propagating therein a light from the semiconductor to guide it to a recording medium and a light deflector element provided on the waveguide for deflecting the light propagated in the waveguide by means of a surface acoustic wave. A multi-mode oscillation laser capable of stably operating in longitudinal modes the number of which is not larger than 5 is used as the semiconductor laser. The semiconductor laser is disposed in proximity to the waveguide at a distance not larger than 1 .mu.m, thereby inputting the light from the semiconductor laser into the waveguide with a high efficiency. A frequency applied to the light deflector element may be changed upon change between a read-out state and a write-in state so that a light spot on the recording medium is held at a predetermined position (track or address). In the case where a grating is used as a light coupling element between the waveguide and the exterior thereof, a hologram grating is disposed in a path of the light derived through the light coupling grating from the waveguide to the exterior thereof so that a chromatic aberration produced at the light coupling grating due to a change in wavelength of the semiconductor laser is cancelled by that produced at the hologram grating.
摘要:
An optical communication device includes a light source that emits a light beam and an optical fiber having a core and a cladding. The optical fiber has a light entrance face having a core region and a cladding region. The light beam emitted by the light source is converged by a converging lens on the core region and is transmitted through the optical fiber. The entrance face is configured to generate a light intensity distribution in light reflected by the light entrance face depending on a position where the light beam is incident on the entrance face, a converging lens arranged between the light source and the optical fiber.
摘要:
It is an object of the present invention to implement a display providing high optical efficiency irrespective of the size of a light valve, and capable of enhancing the uniformity of the luminance of an image to be projected. In order to attain the foregoing object, for example, as shown in FIG. 1, a light valve 103 of a projector is located roughly at the focus point of an illumination lens 102. Further, as shown in FIG. 2, a light source 101 is also located roughly at the focus point of the illumination lens 102. Consequently, it is possible to implement a miniaturized projector.
摘要:
A liquid crystal light valve includes a semiconductor substrate having a region for a plurality of switching elements formed in a matrix form. A first metal layer is formed on the surface of the semi-conductor substrate through an insulating layer and divided into a plurality of parts by first slits. A second metal layer is formed on the first metal layer through another insulating layer and divided into a plurality of parts by second slits. A third metal layer is formed on the second metal layer through still another insulating layer and divided into a plurality of parts by third slits. An opposite substrate has an opposite electrode on a surface thereof, disposed so as to be opposite to said third metal layer through an interval on the opposite electrode side. Liquid crystal fills the interval between said opposite electrode and the third metal layer.
摘要:
A liquid crystal light valve includes a semiconductor substrate having a region for a plurality of switching elements formed in a matrix form. A first metal layer is formed on the surface of the semi-conductor substrate through an insulating layer and divided into a plurality of parts by first slits. A second metal layer is formed on the first metal layer through another insulating layer and divided into a plurality of parts by second slits. A third metal layer is formed on the second metal layer through still another insulating layer and divided into a plurality of parts by third slits. An opposite substrate has an opposite electrode on a surface thereof, disposed so as to be opposite to said third metal layer through an interval on the opposite electrode side. Liquid crystal fills the interval between said opposite electrode and the third metal layer.
摘要:
A color liquid crystal display device includes a liquid crystal element, an optical path conversion element array and a hologram. The liquid crystal element has a blue pixel B, a red pixel R, and a green pixel G, which are arranged plainly, and a liquid crystal layer. The optical path conversion element array converts external light into approximately parallel light. The hologram separates light from the optical path conversion element array into a light having a wavelength range of the three primary colors and irradiates pixels R, G and B corresponding to the liquid crystal element.
摘要:
A liquid crystal light valve includes a semiconductor substrate having a region for a plurality of switching elements formed in a matrix form. A first metal layer is formed on the surface of the semiconductor substrate through an insulating layer and divided into a plurality of parts by first slits. A second metal layer is formed on the first metal layer through another insulating layer and divided into a plurality of parts by second slits. A third metal layer is formed on the second metal layer through still another insulating layer and divided into a plurality of parts by third slits. An opposite substrate has an opposite electrode on a surface thereof, disposed so as to be opposite to said third metal layer through an interval on the opposite electrode side. Liquid crystal fills the interval between said opposite electrode and the third metal layer.
摘要:
The objective lens has a numerical aperture NA=0.6 when reproducing a DVD having a thickness of 0.6 mm and NA=0.42 when reproducing a CD having a thickness of 1.2 mm. At a boundary of NA 0.42, a slight stepped portion is formed so as to establish a phase difference. In this case, a designed wavelength is 0.635 .mu.m, and an optimum designed substrate thickness of a central portion is approximately 0.8 mm. While the DVD is reproduced, wave front aberration is on the order of 0.025.lambda., and jitter contained in the reproduction signal of the CD is equivalent to the present jitter. As a consequence, such an objective lens and an optical head with employment of this objective lens are provided, which precisely reproduce signals from the CD having the substrate thickness of 1.2 mm, and the DVD having the substrate thickness of 0.6 mm.
摘要:
An information recording medium includes an information recording layer on which at least information is to be recorded by irradiating light, and a light transmission restricting layer which has a plurality of nonlinear transmission characteristics or nonlinear reflection characteristics for the intensity of the light irradiated and which has an optical material for restricting the transmission or reflection of the light according to the respective characteristics when the light is irradiated onto the information recording layer. An information recording and reproducing unit uses the information recording medium and includes an information recording position setting unit for deciding a position at which information is to be recorded on the information recording medium by detecting a direction of an easy magnetization axis. With the above arrangement, the spot diameter of the light can be distinguished between the one when information is reproduced and the one when information is recorded on the information recording medium respectively, to thereby ensure an accurate positioning of the head on the tracks of the recording medium.