Abstract:
A display device and a driving method for converting a low-resolution image into a high-resolution image and preventing a visible boundary between partitioned display areas are disclosed. One inventive aspect includes a display panel, a dividing control unit and a scaler. The display panel includes panel areas. The dividing control unit divides an input image into sub-images and the scaler scales the sub-images. The inventive aspect further includes an extra image removing unit and a driver. The extra image removing unit removes an scaled extra image from the scaled sub-image so that the driver provides the processed sub-image to the corresponding panel area.
Abstract:
A method of compensating an image to be display on a display panel is disclosed. In one aspect, the method includes receiving a first input image and adjusting a contrast sensitivity of the first input image. The method also includes calculating a first derivative of luminance of a pixel included in the adjusted image, calculating a second derivative of the luminance of the pixel, and accumulating the first and second derivatives. The method further includes determining a burn-in causing boundary based at least in part on the accumulated first and second derivatives, receiving a second input image, and comparing the burn-in causing boundary to a boundary of the second input image to determine whether to apply burn-in compensation. The method finally includes compensating a portion of the second input image corresponding to the burn-in causing boundary based at least in part on an unsharpening filter.
Abstract:
A method of image processing includes determining a supplement pixel and original pixels adjacent to the supplement pixel, deriving luminance data of the original pixels from input image data, calculating a difference value among the luminance data of the original pixels, selecting an original pixel of the original pixels as an effective pixel when the difference value of luminance data of the original pixel and a nearest original pixel to the supplement pixel is smaller than a predetermined threshold value, setting a weighted value of the effective pixel based on a distance between the supplement pixel and the effective pixel, and calculating luminance data of the supplement pixel based on luminance data of the effective pixel and the weighted value.
Abstract:
A method of driving a display panel includes determining whether an input data signal represents a video image or a static image, determining whether the input data signal has a color difference generating pattern and outputting an output data signal. The output data signal has a first frequency if the input data signal represents a video image. The output data signal has the first frequency if the input data signal represents a static image and the input data signal includes the color difference generating pattern. The output data signal has a second frequency lower than the first frequency if the input data signal represents a static image and the input data signal does not include the color difference generating pattern.
Abstract:
An image processor includes an average luminance calculator which calculates an average luminance of a current frame based on a first average luminance of input image data corresponding to a partial screen and a second average luminance of previous image data corresponding to an entire screen, a conversion curve generator which generates a luminance conversion curve based on the average luminance, a luminance converter which generates conversion image data by converting luminance data of the input image data based on the luminance conversion curve, and an image merger which generates output image data by merging the conversion image data and the previous image data.
Abstract:
A liquid crystal display includes: a display panel including data lines, scan lines and a plurality of pixels connected to the data lines and the scan lines; a scan driver configured to supply scan signals to the scan lines; a data driver configured to supply data voltages to the data lines; and a timing controller configured to control operation timings of the scan driver and the data driver, where the timing controller is configured to output a plurality of scan output enable signals to the scan driver, and the scan driver is configured to supply odd scan signals to odd scan lines based on a first scan output enable signal of the scan output enable signals and to supply even scan signals to even scan lines based on a second scan output enable signal of the scan output enable signals.
Abstract:
A display device and a method of operating the same is disclosed. In one aspect, the display device includes a display panel having a plurality of pixels electrically connected to a plurality of data lines and a power supply configured to generate at least one bias voltage. The display device also includes a charge share controller configured to calculate voltage differences between current data voltages and previous data voltages and to generate at least one charge share control signal based on the voltage differences. The display device further includes a data driver configured to selectively perform a charge share operation or a precharge operation based on the charge share control signal. The charge share operation includes electrically connecting at least two of the data lines to each other and the precharge operation includes applying the bias voltage to the data lines.